United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
REGISTRATION FORM

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

historic name Bourne Mill

other names/site number Bourne Mill Division of Berkshire-Hathaway, Tiverton Industrial Park

2. Location

street & number 844 State Avenue

not for publication

city or town Tiverton & Fall River

vicinity

state Rhode Island & Massachusetts code RI & MA county Newport & Bristol code 005 & 005 zip code 02878

3. State/Federal Agency Certification

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this □ nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property □ meets □ does not meet the National Register criteria. I recommend that this property be considered significant □ nationally □ statewide □ locally. (□ See continuation sheet for additional comments.)

Signature of certifying official/Title Date

Rhode Island Historical Preservation & Heritage Commission
State or Federal agency and bureau

In my opinion, the property □ meets □ does not meet the National Register criteria. (□See continuation sheet for additional comments.)

Signature of certifying official/Title Date

State or Federal agency and bureau

4. National Park Service Certification

I hereby certify that the property is:

□ entered in the National Register

□ See continuation sheet

□ determined eligible for the National Register

□ See continuation sheet.

□ determined not eligible for the National Register

□ See continuation sheet.

□ removed from the National Register.

□ See continuation sheet.

□ other (explain)

Signature of the Keeper Date of Action
5. Classification

Ownership of Property
(Check as many boxes as apply.)
- [] private
- [] public-local
- [] public-State
- [] public-Federal

Category of Property
(Check only one box.)
- [] buildings
- [] district
- [] site
- [] structure
- [] object

Number of Resources within Property
(Do not include any previously listed resources in the count.)

<table>
<thead>
<tr>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>buildings</td>
</tr>
<tr>
<td></td>
<td>sites</td>
</tr>
<tr>
<td>2</td>
<td>structures</td>
</tr>
<tr>
<td></td>
<td>objects</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>total</td>
</tr>
</tbody>
</table>

Name of related multiple property listings
(Enter "N/A" if property is not part of a multiple property listing.)

N/A

Number of contributing resources previously listed in the National Register

0

6. Function or Use

Historic Functions
(Enter categories from instructions.)

- INDUSTRY: manufacturing facility

Current Functions
(Enter categories from instructions.)

- COMMERCE/TRADE: warehouse

7. Description

Architectural Classification
(Enter categories from instructions.)

- OTHER: 19th -and 20th -century industrial

Materials
(Enter categories from instructions.)

- foundation: STONE: granite; BRICK
- walls: STONE: granite; CONCRETE; BRICK
- roof: WOOD; CONCRETE; ASPHALT
- other

Narrative Description
(Describe the historic and current condition of the property on one or more continuation sheets.)
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

- Property is associated with events that have made a significant contribution to the broad patterns of our history.
- Property is associated with the lives of persons significant in our past.
- Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.
- Property has yielded, or is likely to yield information important in prehistory or history.

Criteria Considerations
(Mark "x" in all the boxes that apply.)

Property is:
- Owned by a religious institution or used for religious purposes.
- Removed from its original location.
- A birthplace or grave.
- A cemetery.
- A reconstructed building, object, or structure.
- A commemorative property.
- Less than 50 years of age or achieved significance within the past 50 years.

Areas of Significance
(Enter categories from instructions.)

- Industry
- Architecture

Period of Significance
1881–1951

Significant Dates
1881, 1889, 1900, 1905, 1933, 1951

Significant Person

Cultural Affiliation
N/A

Architect/Builder
Chace, George A., designer; Sheldon, Frank, architect;
Earl, Lloyd S., mason; Brownell, Fenner, carpenter

9. Major Bibliographical References

Bibliography
(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS):
- Preliminary determination of individual listing (36 CFR 36) has been requested
- Previously listed in the National Register
- Previously determined eligible by the National Register
- Designated a National Historic Landmark
- Recorded by Historic American Buildings Survey
- Recorded by Historic American Engineering Record

Primary location of additional data:
- State Historic Preservation Office
- Other State Agency
- Federal agency
- Local government
- University
- Other

Name of repository
10. Geographical Data

Acreage of Property 20 acres

UTM References
(Place additional references on a continuation sheet.)

1 1 9 3 1 8 5 6 0 4 6 1 5 4 2 0
Zone Easting Northing

3 1 9 3 1 8 7 9 5 4 6 1 4 9 3
Zone Easting Northing

2 1 9 3 1 8 3 9 4 6 1 5 3 5 9

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title Edward Connors
organization Edward Connors and Associates
street & number P.O. Box 154522
city or town Riverside
state Rhode Island
zip code 02915

date February 2006
telephone 401 595-0699

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps
A USGS map (7.5 or 15 minute series) indicating the property’s location.
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional items
(check with the SHPO or FPO for any additional items)

Property Owner
(Complete this item at the request of SHPO or FPO.)

name

street & number

telephone

city or town state zip code

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and amend listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 479 et seq.)

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Chief, Administrative Services Division, National Park Service, P.O. Box 37127, Washington, DC 20013-7127, and the Office of Management and Budget, Paperwork Reductions Projects (1023-0018), Washington, DC 20503.
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

Bourne Mill Tiverton & Fall River Newport, RI & Bristol, MA

Name of Property City/Town County and State

Section Number 7 Page 1

DESCRIPTION

Located on the Tiverton, Rhode Island/Fall River, Massachusetts, boundary, the Bourne Mill complex is a group of 23 late 19th- to early 20th-century, one- to five-story, predominantly granite industrial buildings, most attached to each other to form a large complex, and sited on a 20-acre waterfront site bounded by State Avenue in Tiverton and Cook Pond (in Fall River) on the north, commercial parcels on the west, Canonicus Street on the south, and undeveloped land to the Massachusetts state line on the east.

Although the 170-acre Cook Pond, from Bourne Mill to the Dwelley Street dam and outlet in Fall River, provided no waterpower at this location, a succession of 19th-century textile mills around the perimeter of the pond took advantage of the plentiful water for steam and industrial processes. The 1881 Bourne Mill was one of the later mills to locate there. From its north outlet, the waters of Cook Pond run underground in a northwesterly direction for some distance, eventually emptying out into Mount Hope Bay near Chase’s Wharf.

Built for cotton textile manufacture, the earliest construction consisted of the main building (Building 1) and an east ell (Building 2). Over time, a number of auxiliary buildings were arrayed around the main building. In 1900 the Bourne interests erected one of Rhode Island’s first sawtooth weave sheds to house a huge investment in Northrop automatic looms. Most of this massive, one-story granite structure, designed by mill engineer and architect Frank P. Sheldon and enclosing almost three acres of workspace, was recently demolished after the collapse of its roof, but portions of exterior wall survive.

Textile manufacture was carried out under the Bourne name until 1953, when Berkshire-Hathaway purchased the complex, operating it until 1961 for similar purposes. In 1961, Berkshire-Hathaway sold the plant, at which time it was leased to various tenants. Renamed the Tiverton Industrial Park in 1982, the plant is now used for commercial storage and is mostly vacant.

Nineteen contributing buildings, two contributing structures, and four non-contributing buildings are inventoried below.

Inventory

Contributing buildings

The following buildings are inventoried according to their date of construction. With some variation, the numbering scheme is based on a convention established by the Bourne Mill in the mid 20th century.
Contributing buildings and structures are those built during the period of significance that retain all or most of their original features. Non-contributing buildings are those which are partially demolished or which have fully-collapsed and missing roofs.

Building 1, Main Building (1881): Designed by George A. Chace, the first company treasurer, a five-story, 345’ x 80’, coursed, quarry-faced ashlar building with a shallow gable roof. Framing is plank on timber construction supported by round-section iron columns (columns are assumed to be round aren’t they?). A five-story central tower has double, wood-frame freight doors at each floor. An ornate front staircase and balustrade survives. The original mansard roof with four clock faces collapsed within the last fifteen years. Closet space in the fifth floor of the stairtower appears to hold debris from the collapse of the roof. At the tower cornice, masonry detailing evinces a classical capital.

Historic photos show an overhang with exposed rafter ends; these appear to have been cut back almost flush to the building wall, the endgrain now covered with a sheet metal cap. Windows are wood-frame, 12/12, double-hung, set in rectangular openings; lintels and sills are quarry-faced granite.

A combined toilet tower and elevator is located at the rear of the building at the intersection of Buildings 1 and 2. This toilet tower appears to have replaced an original tower near the same location. The original tower appears to have been adapted to serve as an elevator shaft sometime after 1905, at which time the present toilet tower, just north of the elevator, was built. The roof of the elevator tower may offer some indication of the design of the original cornice and overhang of the main roof.

This building housed the weaving and spinning operations of the original mill. By 1905 (after construction of the 1900 weave shed) the first, fourth and fifth floors were used for frame spinning; the second floor was used for drawing and slubbers; the third for carding and speeders; the fifth for mule spinning. The building is currently used for commercial storage.

Building 2, East ell (1881, George A. Chace, designer): A four-story, granite ashlar, perpendicular wing extending to the east of Building 1. Windows are 12/12, matching those of Building 1. The eaves have been altered in the same manner as Building 1. Interior framing is plank on timber supported by round-section iron columns. An east elevation granite tower once served as a dust chimney associated with the third floor picker room.
As originally built, this ell housed the original engine and boiler rooms, opener room, and fourth-floor slasher room. The plant was illuminated by an Edison direct current lighting system located in the basement. By 1895, with the construction of the new boiler house (Building 9), the functions of this building likely changed. By 1905 it housed: a pump room (drawing water from Cook Pond), a dynamo and engine room on the first floor, openers on the second floor, picker room on the third floor. The fourth floor continued to be used as a slasher room. The first floor engine room housed two steam engines with a combined power of 900 HP.

The building is presently used for storage. None of the power or electrical generation machinery survives.

Building 6, Picker House No. 1 (between 1883 and 1889): A two-story, brick building, 106’ x 40’ in area, joined to Building 7. This building represents the first significant expansion of the mill from the original 1881–1883 plant. Described as a “cloth house and repair shop” in 1889, the building appears to have become the main picker house, rendering the picker operation on the third floor of Building 2 an auxiliary function.

Windows are wood-frame, 12/12, double-hung sash, set in segmental arch openings, with flat-head sash and wood sills. The roof is a shallow pitched gable with a wooden cornice. Framing is plank-on-timber supported by round-section wooden columns. An altered, plywood-filled door and brick dust chimney (related to the building’s use as a picker house) are located on the north elevation.

This building is currently vacant.

Building 22, Store House (between 1895 and 1905 et seq.): A three-story, brick, 80’ x 129’ building used as a store house. Typical of early 20th-century textile store- and waste-houses, the three stories of this building have low ceiling heights. Windows are eight-light, wood-frame sash set in segmental arch openings with quarry-faced granite lintels. Sills for the stacked shipping doors at each floor are smooth-finished granite. Interior framing consists of heavy timber resting on wooden columns.

This building was constructed in two phases: an original 80’ x 70’ southern section (defined by a cantilevered brick structure at the roofline) and a post-1905 section extending roughly 60’ to the north.

The building is currently vacant; a portion of the second floor has collapsed in the northeast corner.

Building 23, Office (between 1889 and 1895 et seq.): A brick, 48’ x 42’, two-story office building set on a granite foundation on a small peninsula of land jutting northerly into Cook Pond. (The state line crosses through the building; approximately 10 feet of the rear of the building is in Fall River.) The overhanging roof is flat, with a wooden cornice and brick dentils. As is evident in the façade, this building was built in two phases: the
eastern 2/3 (between 1889 and 1895) being the earlier footprint, the western third (after 1905) closely matching the design of the original. An enclosed entryway extends from the center of the façade. Window openings are rectangular with a bonded arch lintel and a quarry-faced granite sill. Original windows have been replaced with 1/1 modern metal sashes; four are brick-filled. The front door is a modern replacement type.

Interior space is subdivided for office functions. The newer, western section of the building houses a first floor paneled office and a fireplace. Some evidence of original wainscoting and trim is found in a small first floor closet. This building is currently vacant.

Building 20, Supply House (between 1895 and 1905): A brick, single-story, 16’ x 25’, flat-roofed building that served as a supply house in 1905 and possibly as a later yard office. Its proximity to an industrial scale (see list of contributing structures) suggests that it might have also been used in the 20th century as a scale house. All windows are plywood-filled; sills and lintels are quarry-faced granite. Both visible entrances are cement block-filled. A crude, wood-frame east addition provided access to this now-vacant building.

Building 3, Spooling and Warping Building (ca 1900): A single-story, 67’ x 162’, granite building with a shed roof and wood cornice. Windows are paired, 6/9, double-hung, wood sash. Lintels and sills are quarry-faced granite. A pair of wood-frame 6-panel doors with six-light transoms is found on the west elevation. Round section iron columns support the plank-on-timber roof structure.

This building was probably designed by Frank Sheldon as part of the expansion that included the 1900 weave shed. In 1905 it was used to house spooling and warping operations. It is now used for storage. Buildings 3, 4, and 5 were built on raised basements, this likely due to the wet soil conditions below.

Building 4, Intermediate Building (ca 1900): Similar to Building 3 and probably designed by Frank Sheldon, Building 4 is a single-story, 170’ x 77’, granite building with a shed roof and wood cornice. Windows are paired, 6/9, double-hung, wood sash. Lintels and sills are quarry-faced granite. A pair of wood-frame 6-panel doors is found on the west elevation at a concrete loading dock.

Although related in function to the 1900 weave shed, the specific use of this building is unknown. It is currently vacant.

Building 14, Engine and Dynamo Room (ca 1900): A granite ashlar, 23’ x 31’, single-story building. This building served in 1905 as an “Engine and Dynamo Room,” its function probably related to the weave shed (Building 5). Adjacent Building 17 (see list of non-contributing buildings) was described in 1905 as simply an “Engine Room.” This distinction suggests that Building 14 served as a small power house in the generation of
direct current for lighting purposes, similar to the engine and dynamo in the first floor of Building 2. The absence of local boilers in 1905 suggests that steam was drawn from Building 9 and piped either underground or across what was then an open courtyard to this building.

This small building is now subdivided. The west side is empty; the east is a bathroom.

Building 15, Small Boiler Room (ca 1900): A granite ashlar, 26’ x 31’, deep single-story building now housing a single, mid-20th century boiler. Windows are 9-light, wood-frame sash set in rectangular openings. The roof is plank on timber. A partially filled, large segmental arch doorway opens into Building 25. The north wall of this building was an exterior wall early in the 20th century, but is now a party wall with Building 25. This building is currently vacant.

Building 18, 2nd Pump House (ca 1900): Attached to (but predating) Building 16, Building 18 is a small, single-story, 29’ x 21’, uncoursed granite ashlar structure that housed a 1500 GPM fire pump drawing water from a well located under what is now Building 16. Wooden doors on the north elevation are in poor condition. The west end of the near flat roof appears to be failing. The cornice is wooden. This building is currently vacant.

Building 7, Picker House No. 2 (ca 1910): Building 7 is a brick, 106’ x 40’, three-story building, similar in construction and attached to Building 6. Windows are a mix of wood-frame 12/12 and 8/8, double-hung sash set in segmental arch openings with wood sills. The building’s framing consists of plank on steel I-section beams supported by round-section wood columns. The roof is a shallow pitched gable with a wood cornice. Although door openings are found on the east, south and west elevations, the only doorway that appears to date to the original construction is a double, wood-frame door on the west elevation set in a segmental arch opening. Two doors on the south elevation once provided passage to Building 8, which was demolished in the late 20th century.

A single steel beam is all that remains of an enclosed overhead passage that once connected the northeast corner of Building 1 to this building. Damage to the masonry of both buildings appears to have occurred in the demolition of this passage. This building is currently vacant.

Building 11 (ca 1910): A brick, 28’ x 19’, deep single-story building at the south end of the open courtyard between Buildings 1, 2, 9, and 13. A segmental arch door on the south elevation provided access from the interior of Building 12. Small eight-light windows are set in segmental arch openings.

The original function of this building is unknown; it is currently vacant.
Building 10, Third Boiler House (between 1905 and 1933): A deep single-story, 40-44’ x 135’, granite ashlar building attached to the east side of Buildings 9 and 12, and to Buildings 2 and 25 on the north and south, respectively. Its upper level windows have 8/12, double-hung, wood sash. All lower level window openings are cement block-filled. Sills and lintels are quarry-faced granite. The building has a shed roof, consisting of a heavy wood plank deck on I-section steel beams. The east, and most visible, elevation has been heavily altered with large door openings, now filled with brick and cement block. The interior of the building is clear span. All boilers have been removed. The building is currently vacant.

Building 12 (between 1905 and 1933): A deep single-story, concrete and brick, 41’ x 57’ building separated from the remains of Building 9 by a wood-framed glass curtain wall, much of which survives. Windows on the west (brick) wall are wood-frame, 12/12, set in segmental arch openings. On the east (granite ashlar) wall, rectangular window openings to Building 10 are now cement block-filled. The building has a shed roof. The historic function of this building is unknown; it is currently vacant.

Building 19, 3rd Pump House (between 1905 and 1933): A small, 24’ x 17’, single-story, granite building with a shallow-pitched gable roof and single garage entrance located in the courtyard between Buildings 2 and 7. This building, sited above an intake line from Cook Pond that extends to Building 18, housed a 1,000 GPM pump that was driven by a steam turbine. There are two rectangular window openings; the south elevation window is an 8/8, double-hung, wood-frame sash with a quarry-faced granite sill. On the north elevation the window opening is brick-filled. This building is currently vacant.

Building 24, Garage (between 1905 and 1933 et seq.): A long, narrow, 137’ x 24’, flat-roofed, brick building that started out as a roughly 24’ x 24’ garage. Successive extensions to the east appear to have occurred in two phases: a first extension of roughly 40’ to the clear demarcation in roofline evident today, and another 70’ extension to the cement-block east wall that terminates the building. The older 66’ western section has a low parapet on the west and south elevations defined by brick dentils (similar to that of Building 23) and a precast concrete cornice. Original openings (likely garage doors), are now brick-filled with bonded arches plainly visible. The newer, 70’ section has little architectural detail. All windows and doors on the front elevation date to mid-20th century. Six-light wood-frame windows on the rear elevation (facing Cook Pond) of the original garage footprint appear to be original.

This building served as a retail yarn store in the mid- to late-twentieth century; it is currently vacant.
Building 25, Passage (between 1905 and 1933): In the years after the construction of Buildings 5, 14, 15, 17, and 18 (ca 1900), there was an open courtyard north of these buildings which extended to Building 9. Over time, much of the open courtyard was filled in with a combination of permanent buildings and more utilitarian, infill structures. A corridor providing passage between the older group of ca 1900 buildings to the south and the newer cluster of buildings (Buildings 10-13) to the north emerged in the early 20th century. This roughly 80’ x 17’ passage, consisting of three separate chambers, is constructed of brick and granite, its roof supported by timber beams extending across the passage. The only elevation visible from the exterior (the east-facing wall) consists of a brick front with two, nine-light, wood sash windows set in rectangular openings above paired, wood, five-panel doors milled to fit the segmental arch opening.

The east, and apparently oldest, chamber consists of a deep, single-story between Building 15 on the south and Building 12 on the north. Although the west wall of this chamber now serves as an interior wall, it has two window openings that still contain wood-frame sashes consistent with those found in Building 15. This would indicate that for a period of time this chamber was the full extent of Building 25, the two smaller chambers to the west added later. This building is currently vacant.

Building 16, Diesel Engine Building (between 1939 and 1951): A granite ashlar, 67’ x 43’, deep single-story building with a steel frame supporting a nearly flat concrete roof. The cornice is of wood. This clear span building housed diesel engines that were likely associated with a water intake line extending from Cook Pond. The building’s windows are a mix of eight-, 12-, and 20-light, metal-frame sash, typical of industrial buildings of the period. They are set in rectangular openings and have concrete sills. The building is currently used for storage.

Contributing Structures

Chimney (between 1905 and 1933): A brick, 165’-high, round section chimney east of Building 10. An overhead economizer unit that carried exhaust from the boilers of Building 10 has been removed. The openings for this unit in both Building 10 and the chimney are now cement block-filled.

Scale (early to mid-20th century): Located northwest of Building 20 is a 10’ x 50’ concrete-decked industrial scale. Access covers to the scale mechanisms are stamped with the name of the Swett Iron Works, Medina, NY. The manufacturer of the scale itself is unknown. Building 20 may have been a combined scale house and yard office.
Non-contributing buildings

Building 9, Second Boiler House (between 1889 and 1895): Construction of this deep single-story, randomly-coursed granite, 44’ x 82’ boiler house (replacing the earlier boiler room housed in Building 2) represented a significant expansion of the Bourne complex. Housing eight boilers, this building provided steam to the engines in adjoining Building 2 which powered the plant through overhead shafting. Surviving windows are paired 12/12, double-hung, wood sash. The floor is concrete. A partial south curtain wall of wood-frame windows separates this building from Building 12.

The building is currently vacant, and a large portion of the roof has collapsed.

Remains of Building 5, Weave Shed (1900, Frank P. Sheldon, architect): All that survives of this single-story weave shed are portions of exterior wall. Designed by Providence mill engineer and architect Frank P. Sheldon, this massive, granite, 320’ x 395’ structure enclosed almost three acres of space housing over 2,000 looms and was one of the first sawtooth roof weave sheds in the state. Over the last fifteen years the roof has failed. Demolition of most of the building was carried out in 2005 on orders of the Town of Tiverton Fire Marshal.

Building 17, Second Engine Room (ca 1900): A granite ashlar, 49’ x 39’, deep single-story (with basement) building. Distinct from the engine room located in Building 2, this building housed steam engines for the 1900 weave shed (Building 5). The roof has collapsed. A wood-frame monitor window that once sat atop the roof is visible from the upper floors of Building 1.

Building 13 (between 1905 and 1933): A granite ashlar, 20’ x 45’, single-story building likely built as infill between Buildings 1 and 12. The roof has collapsed.
SIGNIFICANCE

The Bourne Mill complex is the physical expression of eighty years of textile manufacture, adaptation to changing markets and industrial conditions, and decline. Located on the Rhode Island-Massachusetts state line, the complex is physically situated in Tiverton, Rhode Island, but historically is more closely associated with manufacture in Fall River (Massachusetts). Built between 1881 and 1883, the Bourne Mill was among the last of a number of 19th-century steam-powered textile mills constructed along the periphery of Fall River’s Cook Pond; it was financed and operated by Fall River textile interests and constructed predominantly of locally- quarried Fall River granite. Within six years of the beginning of its operation in 1883, the company instituted a successful profit-sharing program that attracted national recognition and considerable ire from competing Fall River mill owners. The company expanded into the early 20th century, struggled through the Great Depression, became a division of Berkshire-Hathaway in 1953, and closed in 1961. At present, Buildings 1, 2, and 3 are used for commercial storage and the rest of the complex is vacant. As such, it is highly representative of the rise and decline of textile manufacture seen throughout New England in the 20th century.

Nineteen contributing buildings and two contributing structures survive. This complex meets National Register Criterion A through its ties to the industrialization of Rhode Island and Criterion C as a fine example of the evolution of industrial architecture through the late 19th- and early-20th centuries.

History

Textile manufacture in Fall River dates to 1811, when Joseph Durfee set up a cotton spinning mill near what is now Globe and South Main Streets. A few years later, Oliver Chace, of the Troy Cotton and Woolen Manufactory, and David Anthony, of the Fall River Manufactory, took advantage of the substantial water power at the outlet of the Watuppa Ponds and began the large-scale industrialization of Fall River.

Huge expansion of the Fall River textile industry took place during the Civil War era, the number of spindles increasing from 117,636 in 1854 to 1,258,508 in 1872. In the year 1872 alone, eleven new mills commenced operation. By the end of the 19th century the combined output of the sixty mills of the Fall River area made it “the largest cotton manufacturing community of the New World.”¹ Among these late century mills were a number of steam mills on the periphery of Cook Pond, drawing process water from this impoundment created in 1815 by the erection of the dam at Dwelly Street, at the northern edge of the pond (see Figure 1, Additional Materials). These mills included the King Philip and Osborn Mills, arrayed on either side of the Dwelly Street Dam, and the Shove Mills along the southwest edge of the pond.

¹ Fenner (1906), p.3.
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

Bourne Mill
Tiverton & Fall River
Newport, RI & Bristol, MA

Name of Property
City/Town
County and State

Section Number
Page

The Bourne Mill, as described in an 1889 *Fall River Daily Herald* article, came into being as the result of “an oft-expressed desire” on the part of the company’s first president, Edmund Chase, “to own a mill with a few friends in a close corporation.” Capitalized at $400,000, the Bourne corporation broke ground in 1881 for the construction of a five-story mill to be built of granite quarried a short distance away. Mr. Chase never achieved his oft-expressed desire, as he died in 1883, the same year the mill commenced operation. His successor as president was board member and original investor Jonathan Bourne (1811-1889), a New Bedford whaling merchant and state legislator. Bourne, for whom the town of Bourne, Massachusetts, is named, contributed the four clock faces of the original mansard-roofed tower as a gift to the corporation.3

Cotton cloth manufacture at Bourne Mill

Built of locally-quarried granite at a cost of $155,000, the Bourne Mill was designed by company treasurer George A. Chace. Lloyd S. Earl was the chief mason and Fenner Brownell the carpenter. Housing 1,080 looms and 43,000 spindles of English and American manufacture, the main mill (Building 1) consisted of a five-story, 80′x 345′ central wing with mansard tower, housing all weaving and spinning operations. A 4-story, 101′x 52′ rear ell housed the engine and boiler rooms, and a slasher room (top floor). An Edison direct current lighting system, located in the basement of this ell, illuminated the plant. A separate, 2-story, brick “cloth house and repair shop” (Building 6, later described as a picker house) was located at the northeast corner of the main mill. The mill commenced operation in 1883 with 500 employees. Over the next four decades, the Bourne interests continued to expand the physical plant, most notably with the construction of a huge sawtooth roof weave shed and several auxiliary buildings in 1900.

Although a number of Fall River cotton mills, including the neighboring Shove Mill (1872), with a satellite operation in Tiverton), had found a niche market in “odd goods,” specially-ordered goods of non-standard widths or thread counts, at its beginning the Bourne Mill produced Canton flannels, due to the influence of the plant’s first superintendent, George Morgan. He had considerable experience in the manufacture of this fabric, but the marketing of this specialty required the service of a selling agency and the directors abandoned it as unprofitable in 1885. Morgan resigned the same year. At this time, the company switched its product line to specially-ordered odd goods. The dominant products of the mill over the years were sateens, a cotton cloth made with a satin weave; and twills, a type of weave that produces a cloth of greater firmness, weight, and

3 Until the 1990s, employees of the moving and storage company now occupying Building 1 would sometimes go up into the roof and wind the four still-operating original clocks. Source: interview with Dave, the company owner.

4 The machinery for the mill cost an additional $600,000.
substance than can be produced using similar yarns in a plain weave. By the turn of the century the mill was producing 17,000,000 yards of cloth annually.

Profit Sharing at the Bourne Mill

Bourne had entered the whaling trade in 1841 with the purchase of the merchant ship *Lagoda*,\(^5\) which he outfitted for whaling and operated for forty-five years. When he retired the ship in 1886, it had produced a net profit of more than $650,000. In his whaling years, Bourne used an early form of profit-sharing common in the trade known as the “lay-system.” This system distributed on a tiered scale a “lay” or portion of the profit of the voyage to all of the whalers.

Although Bourne’s tenure as president of the textile corporation was brief (1883–1889), his experience with the lay-system provided the basis for the introduction of a profit sharing plan that attracted national attention. After two years of significant profits and healthy dividends, the directors of the Bourne Mill conducted a study and adopted, in May 1889, a six-month trial of a plan to share the dividends with the mill operatives. For a detailed explanation of this plan, see the chapter on the Bourne Mills from Rev. Nicolas Paine Gilman’s 1899 study of industrial cooperation, *A Dividend to Labor*, reproduced in the *Additional Information* section of this nomination. Gilman, a Christian Socialist and founding member of the Association for the Promotion of Profit Sharing, described the Bourne Mills profit sharing plan as “one of the most successful instances on record,” despite distinct disadvantages peculiar to the New England textile trade: the low education and wage level of the mill operatives, high cost of the original investment (mill and machinery), and the high reliance on machinery as compared to hand labor.\(^6\)

Although Bourne’s chief influence in profit sharing appears to have been his whaling experience, the rise of unionism as a force for collective bargaining and the desire for “industrial peace” could not have been far from the minds of the directors. Albert Gallatin, Secretary of the Treasury under Presidents Jefferson and Madison, instituted the first profit sharing plan in the country in the 1790s for the employees of his glassworks in New Geneva, Pennsylvania\(^7\) Gallatin’s experience was not duplicated for another seventy years, when the Bay State and Shoe Leather Company (Massachusetts) set up the nation’s second plan in 1867. Within a few years, the Riverside Press in Cambridge (1872) had established a profit sharing plan for their workers. In Rhode Island,

5 A half-scale model of this ship, constructed in 1911, is on display at the New Bedford Whaling Museum.
6 *A Dividend to Labor*, 304 (reproduced in *Additional Information* section).
7 Other sources date this experiment to 1794. Nicholas Gilman cast some doubt on the entire story, see footnote on pp. 378-9, *A Dividend to Labor* (1899).
the Peace Dale Manufacturing Company set up a plan in 1878, the Rumford Chemical Works in 1886, and the Bourne Mill in 1889.

The chief administrator of the Bourne profit sharing plan was company treasurer George A. Chace. Chace’s plan was to give each operative “who continues faithfully at his work a share in the profits in proportion to dividends paid to stockholders and according to wages earned.” The formula worked in this way:

Every employee...who has served six months and worked faithfully during the term of this scheme, has a share in the profits “in proportion to the dividends declared and paid to the stockholders.” The share is paid as a dividend upon the wages earned. A sum amounting to not less than six, nor more than ten percent of the amount paid to the stockholders (the percentage being determined by the directors) is divided by the largest total wages which the force can earn in six months. This gives the percentage on wages to be paid to each worker. His “divvy,” as the men call it, varies thus according to his whole wages.

The advantages to the company were clear. Chace, quoted eight years into the program (1897), discussed an upcoming vote of the stockholders as to the advisability of continuing the plan: “Unless profit sharing promotes profitability, no one can keep it up.” The plan gave all indications of profitability:

The sharing of profits stirs up the ambition to make profits to share, as the payment of dividends stimulates the earning of dividends. The other advantages to the company come in the form of better discipline, punctuality, care of machinery, cleanliness, economy of waste...

Bourne’s experiment stood out in contrast to the standard wage system maintained by the owners of the rest of Fall River’s cotton mills; Chace’s assessment of the benefits of profit sharing was not held by his competitors. A decidedly critical article appeared in the American Wool and Cotton Reporter in late 1906. By this time, Bourne had delivered dividends to its operatives in all but two six month periods since the inception of the

8 The author has found no evidence of the influence of the Peace Dale experiment on the thinking of Jonathan Bourne or the Bourne directors. The Hazard’s family’s introduction of profit-sharing at their Peace Dale Mfg. Co. woolen factory in 1878 was the result of a trip made by Rowland G. Hazard (1801-1888) to Rochdale, England, and other sites to observe co-operative programs. Hazard had corresponded with John Stuart Mill and was quite familiar with the philosophical debate on the continent over the antagonistic or interdependent relations between capital and labor. See, J.R. Cole, History of Washington and Kent County, pp. 504-5.

10 Ibid.

11 Providence Journal of Commerce 6 (February 1898): 31. Chace, in a letter to employees, cited an 80 percent reduction in “seconds” over the years of profit sharing. See A Dividend to Labor, p. 309.
program. This article, summarized in the Providence Journal, cites the inevitable conflict between capital and labor as played out in the Bourne Mills:

> The labor leaders are enthusiastic over the outlook [for further dividends], but their action in reference to stop-motions and the strike they called…would hardly justify any organized labor hurrahs over treasurer Chace’s efforts to fill his mill with expert operatives.¹²

The American Wool and Cotton Reporter was making reference to a crippling strike of 1904–1905 that demonstrated the limits of industrial cooperation in a time of economic crisis for the area’s cotton mills.

Labor trouble and the introduction of the automatic loom

A brief item in the Providence Journal of Commerce in August 1898 noted the Bourne Mills’ adoption of the Northrop, an automatic loom developed by the Draper Company of Hopedale, Massachusetts, in 1894. Although many of Fall River’s textile mills were reluctant to adopt the automatic loom,¹³ the Seaconnet Mill had installed an early version in 1889 with satisfactory results. Nine years later, the Bourne Mill purchased an unknown number of these looms, in the process cutting their weave staff in half.¹⁴

At the time of the 1898 purchase, the Bourne Mill was operating 1,316 looms. Two years later the company hired Providence mill engineer Frank P. Sheldon to design a huge, sawtooth-roofed, granite weave shed (Building 5, demolished 2005) to house 2,700 automatic looms. Within a few years of this massive increase in production capability, a general production curtailment of about 20 percent occurred in 1904 due primarily to southern competition. One local industrialist noted that southern-produced cotton could be shipped north and sold on the streets of Fall River for a profit at a price lower than he could manufacture it locally.¹⁵

To address the slowdown, in July 1904 the Fall River Cotton Manufacturers Association agreed to a 12.5 percent cut in wages for mill operatives. A local labor leader described conditions in this way:

¹² As quoted in the Providence Journal (7 January 1907): 12.

¹³ This reluctance is discussed in Thomas R. Smith’s The Cotton Textile Industry of Fall River Mass (1944)pp. 115-117.

¹⁴ Melvin Copeland, in The Cotton Manufacturing Industry of the United States (1912), writes, “The chief advantage of the Northrop loom consists in a saving of labor. It has reduced the labor cost of weaving one-half, a fact which is particularly significant since the labor cost of weaving previously constituted one-half of the entire labor costs of manufacturing cotton cloth. This saving has resulted from the increased number of looms per weaver. One weaver now tends from fourteen to thirty Northrop looms, where before he tended six to eight common looms.” p. 86.

United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

Bourne Mill Tiverton & Fall River Newport, RI & Bristol, MA
Name of Property City/Town County and State

Section Number 8 Page 6

The people are desperate on account of the long curtailment and the great reduction they have been called on to suffer in addition, because of running more looms and the removal of much of the spare help in departments outside of the weaving room…I think the operatives will not stand for a reduction at this time. They will not be able to resist for a long time, but I feel that there will be spasmodic strikes even though the union may formally accept a reduction, a thing I do not expect to see.16

The local unions did not accept the reduction, voting to strike on July 25. Although some weavers showed up at Bourne, the accumulated goodwill of fifteen years of profit sharing was not enough to keep the mill operating. By the following day, all of Fall River’s cotton mills were closed. The strike continued into early 1905 when Massachusetts Governor William Doyle involved himself in negotiations between the labor unions and the cotton manufacturers. An agreement for a 7.5 percent reduction, as opposed to the 12.5 percent wage reduction that precipitated the strike, was reached on January 18, 1905. Over the course of the strike, Fall River’s cotton operatives lost $4,000,000 in wages. Bourne’s directors paid no profit sharing dividends during the two six-month periods affected by the strike. They did, however, resume the plan as soon as production returned to normal levels and profitability returned17.

Recent history

The Bourne Mill continued in its specialty area of twills and sateens through the World War II era, at which time it employed 1000 operatives. The Bourne interests sold the company to Berkshire-Hathaway in 1953, at which time it became a division of the corporation. Berkshire-Hathaway closed the plant in 1961. Since that time the plant has been occupied by various tenants. Although renamed the Tiverton Industrial Park in 1982, the plant had only marginal use. Buildings 1, 2, 3, and 16 are presently used for storage, and the remaining buildings are vacant. The Armory Revival Company of Providence plans to rehabilitate the property for mixed use.

16 ibid.
17 At the time of writing of this nomination, no evidence had emerged to confirm when the profit-sharing program ended.
MAJOR BIBLIOGRAPHICAL REFERENCES

Articles:

“Profit Sharing in Mills: Criticism in Results in a Tiverton Textile Plant.” *Providence Journal*. (7 January 1907): 12.

Books and Monographs:

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

Bourne Mill Tiverton & Fall River Newport, RI & Bristol, MA

Name of Property City/Town County and State

Section Number Page

9 2

Fall River: The Spindle City of the Country. Fall River: Lawton, 1909.

Fenner. Massachusetts Cotton Centennial History of Fall River. Fall River: Fall River Merchants Association, 1911.

Gilman. Monographs on American Social Economics, XII: Cooperation and Profit Sharing. Contributed to the US Social Economy Exhibit for the Paris Exhibition of 1900 by the Commonwealth of Massachusetts.

Electronic Sources:

United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Name of Property</th>
<th>City/Town</th>
<th>County and State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne Mill</td>
<td>Tiverton & Fall River</td>
<td>Newport, RI & Bristol, MA</td>
</tr>
<tr>
<td>Section Number</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Government documents:

Maps and engineering drawings:

George H. Walker. *Atlas of the City of Fall River, Mass.* (1883)

Everts and Richards. Atlas of Surveys, Southern Rhode Island (1895)

Everts and Richards. *Atlas of Bristol County, Mass.* (1895)

Sampson, Murdock, and Co., *City of Fall River*, 1897

Massachusetts-Rhode Island Boundary Line, Plan 15 (1898). On file, RI State Archives

Sanborn Fire Insurance maps. *Fall River* (1905), *North Tiverton*, (1933)

Bourne Mill Tiverton & Fall River Newport, RI & Bristol, MA
Name of Property City/Town County and State
Section Number 10 Page 1

GEOGRAPHICAL DATA

UTM References (continued)
5. 19 318575 4615152
6. 19 318516 4615164
7. 19 318557 4615320
8. 19 318528 4615327

Boundary Description
The boundaries of the Bourne Mill are contiguous with Tiverton Tax Assessor’s Plat Map 2-14, Block 38, Lots 1 and 1A; and Map 9-7, Block 37, Lot 1. There is no recorded parcel number for the portion of the property that is located north of the Massachusetts/Rhode Island state line.

Boundary Justification
These boundaries, comprising 19.9 acres, define the land historically associated with the operation of the Bourne Mill from 1881 to 1961.
<table>
<thead>
<tr>
<th>Name of Property</th>
<th>City/Town</th>
<th>County and State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne Mill</td>
<td>Tiverton & Fall River</td>
<td>Newport, RI & Bristol, MA</td>
</tr>
</tbody>
</table>

Bourne Mill
844 State Avenue
Tiverton, RI & Fall River, MA
Fall River, MA Quadrangle
Scale: 1: 24,000
NATIONAL REGISTER OF HISTORIC PLACES

CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Bourne Mill</th>
<th>Tiverton & Fall River</th>
<th>Newport, RI & Bristol, MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Property</td>
<td>City/Town</td>
<td>County and State</td>
</tr>
<tr>
<td>Section Number</td>
<td>Add’l Info</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION

Figure 1

Detail from 1897 Sampson, Murdock map showing Bourne Mill at southern edge of Cook Pond, dam and pond outlet at Dwelly Street, and succession of mills drawing water for steam or power along the pond to its drainage into Mt. Hope Bay near Chase’s Wharf
Bourne Mill Tiverton & Fall River Newport, RI & Bristol, MA

Name of Property City/Town County and State

Section Number Add’l Info Page 2

Figure 2
Halftone engraving of Bourne Mill (1889) showing (l-r) Office, Picker House, Main Mill, and single-story frame storehouse in front of Main Mill

Figure 3
Detail from Everts and Richards Atlas map of Southern Rhode Island (1895)
<table>
<thead>
<tr>
<th>Name of Property</th>
<th>City/Town</th>
<th>County and State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne Mill</td>
<td>Tiverton & Fall River</td>
<td>Newport, RI & Bristol, MA</td>
</tr>
</tbody>
</table>

Figure 4

THE BOURNE MILLS

A striking illustration of what profit sharing can do may be found in a line of industry in which the rate of compensation to the worker is not high, comparatively, in which the first cost of the plant is large, and the importance of hand labor by the side of machinery is low, and in which the average grade of intelligence is not up to the common level of the environing society. The Bourne cotton-mills of Fall River, Mass. (the mills are just over the state line in Tiverton, R.I.), supply all these conditions, which will at once be recognized as in themselves unfavorable to any high degree of success in the application of profit sharing. The intelligence and “animated moderation” with which the idea has been applied there have, however, made this experiment one of the most successful instances on record. It has these distinct excellences as an illustration of the possibilities of industrial partnership, that it is of recent date, while it has yet been in force long enough (ten years) to give assurance of stability; that it has been subject to disadvantages from which many occupations are free, such as the comparative unintelligence of the French Canadian workers, now so important a force in New England factory towns; and that it has been conducted through six years of prosperity and four of extreme depression, while subject to continuous hostile criticism from the other mill-owners of the city.

Mr. Jonathan Bourne, the first president of the Bourne mills, had long been a whaling merchant, and was familiar with the usual custom, which works so well in whaling and sealing, of giving the men on each vessel a “lay,” or share in the profits of the product. After two years of handsome dividends in the new mills, and a year's careful consideration of the scheme, the directors, through Mr. George A. Chace, the treasurer, issued a circular May 23, 1889, announcing that profit sharing would be adopted for the six months beginning July 1. Mr. Bourne died a month later, and the directors have pursued a very conservative course ever since in regard to their time limit. Every six months the plan was readopted for six times, before a whole year's experiment was sanctioned: in the entire ten years a favorable vote for continuance has been given fourteen times. The directors, while actuated by feelings of good-will toward their employees, adopted and have continued the profit-sharing method, not as philanthropy, but as “good business,” operating for the benefit of all concerned. The treasurer has taken pains, in his regular communications to the working force, to emphasize the duty of every employee to contribute his share toward the best possible operation of the mills.1

Every employee of the 400 or more, who has served six months and worked faithfully during the term of this scheme, has a share in the profits “in proportion to the dividends declared and paid to the stockholders.” The share is paid as a dividend upon the wages earned. A sum amounting to not less than six, nor more than ten percent of the amount paid to the stockholders (the percentage being determined by the directors) is divided by the largest total wages which the force can earn in six months. This gives the percentage on wages to be paid to
each worker. His “divvy,” as the men call it, varies thus according to his whole wages. The average of the twenty semi-annual dividends on wages for the ten years has been 3.3 percent (2 was the lowest, and 7 percent, paid once, the highest: 3, or a little over, was the usual rate), 66 percent in all. The average wages of all the employees were 10 percent greater in 1897 than in 1889, though the standard price of wages was higher then than in 1897 (except for mule-spinning), and the mills ran two hours more a week: the tendency has been uniformly to increase. Employment has been almost constant in the Bourne mills for these ten years, “really the greatest advantage of all” to the employee, says the treasurer. Stoppages amounted to only 3 percent of the maximum full time.

Between 1889 and 1895, inclusive, the Bourne mills paid nearly twice as large dividends as its competitors, --a fact largely due to profit sharing, it is reported, and sufficiently explanatory of the treasurer's statement in July, 1897, that the plan has never “been more satisfactory than at the present time.” Mr. Chace has always warned the employees and the general public against expecting too much from the new method. But, “within certain bounds, under favorable conditions, it is worth the trial of any fair-minded man of business,” he has recently said in print. A secret vote of the employees on the continuance of the system was taken in November, 1895. It showed but six ballots against the system, while several hundred believed it an advantage to themselves and a benefit to the corporation. One conscientious workman voted “No” because he felt that the corporation did not receive a full equivalent for the bonus!

Mr. Chace, who has taken great pains to educate the employees in a right understanding of the system, issued a circular in December, 1895, giving the result of the ballot of the month before, and continuing thus:

The plan has now been in practice long enough for all to understand that it means a sum of money to everyone who conforms to the simple conditions during a term of six months. I can assure you that I pay this money to you as heartily as I pay the dividends upon which it is based; and I am glad to be able to add that never has an objection or murmur reached me from a stockholder on account of it since the plan was adopted, nearly seven years ago. It seems no more than right, however, that it should be made clear to every one expecting a share in the profits, that there is no intention on our part to make a free gift of money for nothing, but rather that every payment is the carrying out of a distinct agreement or contract, under which both parties to it are hoping for mutual benefit. To emphasize this point, in future all persons whose names are entered on the profit sharing rolls will agree to and sign the following contract, which has been printed on cards for that purpose, namely:

TREASURER BOURNE MILLS:
Please enter my name in the profit-sharing roll for the term ending June 13, 1896, upon the conditions named and hereby agreed upon; namely, that I will endeavor throughout the term
(1) To do faithful service as an employee of the corporation.
(2) To promote its interests as far as my acts and influence go, both in and out of the mill (knowing that
its success will contribute to my own welfare, too).

(3) To deposit some sum of money every month, if possible, in the Employees' Savings Fund or in some saving bank, it being further agreed that I shall forfeit all claim to any share of the profits if any of these conditions is infringed.

The signing of this agreement on the part of those who want to share in the profits of the next six months is simply putting in writing what has been understood all along; and everyone, every man, woman, and child in our employ, is just as cordially invited to participate as ever before. I would like to enter every name on the pay-roll in the profit-sharing roll also. I appreciate the interest that has been taken by a great many of you during the past nearly seven years in promoting the success of the Bourne mills; and, while we can hardly hope that seven more fat years will follow, I am here to do the best I can, and that is all I will ask of anyone of you.

A sign of the liberal spirit in which the Bourne mills interpret the three conditions given above is the following notice sent to a number of employees in December, 1895.

The directors regret to remind you that you forfeited your dividend September 23, by quitting work without obtaining permission. As it might seem harsh, however, to cut off the whole of it under the circumstances, they have restored to you under the form of a gratuity [5 percent on wages] a sum larger than any dividend paid you heretofore, though not as much as you might have received except for your action at that time.

Another letter of the treasurer to the employees, under date of July 1, 1897, spoke of the great decrease in the number of “seconds” made in the mills under profit sharing (a reduction from five to one); and this, too, “means an improvement in the general quality.” These results “are not the spasmodic outcome of an experiment just begun, but the daily routine after eight years of experience.” The superintendent and the treasurer united in declaring that “it has been a pleasure rather than a task to do business under these conditions the last eight years.”

1 Mr. Chace writes thus in August, 1899: “Profit sharing has been voted upon by our board of directors now fourteen times, and no dissenting vote has ever been recorded. Neither have I ever received or heard of any opposition to it upon the part of any of our stockholders. I have, on the contrary, on various occasions, obtained information, either directly or indirectly, to the effect that it was a pleasing experiment to them. Some, of course, look upon it favorably from a philanthropic standpoint, and are gratified to believe that a profitable investment in which they are personally interested is being used, as they think, to advance the condition of employees and promote better feeling between capital and labor, while others regard the venture in a purely business way, and conclude from the results, in the comparative returns of dividends upon capital, that it is a profitable method of employment of workmen, and hence they too are pleased.”