United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in *How to Complete the National Register of Historic Places Registration Form* (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

<table>
<thead>
<tr>
<th>1. Name of Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>historic name _____ South Street Station</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>street & number _____ 360 Eddy Street</td>
</tr>
<tr>
<td>state _____ Rhode Island</td>
</tr>
<tr>
<td>state or Federal Agency Certification</td>
</tr>
<tr>
<td>As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets does not meet the National Register Criteria. I recommend that this property be considered significant nationally statewide locally. (See continuation sheet for additional comments.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature of certifying official/Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhode Island Historical Preservation & Heritage Commission</td>
<td></td>
</tr>
<tr>
<td>State or Federal Agency or Tribal government</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. State/Federal Agency Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>In my opinion, the property meets does not meet the National Register criteria. (See continuation sheet for additional comments.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature of certifying official/Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>State or Federal agency and bureau</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. National Park Service Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, hereby certify that this property is:</td>
</tr>
<tr>
<td>☐ entered in the National Register</td>
</tr>
<tr>
<td>☐ determined eligible for the National Register</td>
</tr>
<tr>
<td>☐ determined not eligible for the National Register</td>
</tr>
<tr>
<td>☐ removed from the National Register</td>
</tr>
<tr>
<td>☐ other (explain):</td>
</tr>
</tbody>
</table>
5. Classification

Ownership of Property
(Choose as many boxes as apply)
- [x] private
- [] public-local
- [] public-State
- [] public-Federal

Category of Property
(Choose only one box)
- [x] building(s)
- [] district
- [] site
- [] structure
- [] object

Number of Resources within Property

<table>
<thead>
<tr>
<th>Type</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>buildings</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>structures</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>objects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Name of related multiple property listing
(Enter “N/A” if property is not part of a multiple property listing.)

N/A

Number of contributing resources previously listed in the National Register

0

6. Function or Use

Historic Functions
(Enter categories from instructions)
INDUSTRY : power plant

Current Functions
(Enter categories from instructions)
RECREATION AND CULTURE : museum
COMMERCE/TRADE : business

7. Description

Architectural Classification
(Enter categories from instructions)
- Classical Revival

Materials
(Enter categories from instructions)
- foundation : CONCRETE
- roof : SYNTHETICS: rubber
- walls : BRICK
- other : STONE: limestone, granite

Narrative Description
(Describe the historic and current condition of the property on one or more continuation sheets.)
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing)

- ☒ A Property is associated with events that have made a significant contribution to the broad patterns of our history.
- ☐ B Property is associated with the lives of persons significant in our past.
- ☒ C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.
- ☐ D Property has yielded, or is likely to yield information important in prehistory or history.

Criteria Considerations
(Mark "X" in all the boxes that apply.)
Property is:

- ☐ A owned by a religious institution or used for religious purposes.
- ☐ B removed from its original location.
- ☐ C a birthplace or a grave.
- ☐ D a cemetery.
- ☐ E a reconstructed building, object, or structure.
- ☐ F a commemorative property.
- ☐ G less than 50 years of age or achieved significance within the past 50 years.

Period of Significance
1912-1955

Significant Dates
1912, beginning of first building campaign
1925, conclusion of final building campaign

Cultural Affiliation
N/A

Architect/Builder
Narragansett Electric Lighting Co. engineers, with J.R. Worcester & Co. (1912-1914 building campaign) and Jenks & Ballou (1924-1925 building campaign)

9. Major Bibliographical References
(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS)
☐ preliminary determination of individual listing (36 CFR 67) has been requested.
☐ previously listed in the National Register
☐ previously determined eligible by the National Register
☐ designated a National Historic Landmark
☐ recorded by Historic American Buildings Survey #
☒ recorded by Historic American Engineering Record # included in *Rhode Island: An Inventory of Historic Engineering and Industrial Sites*, 1978

Name of repository: Rhode Island Historical Society

Primary Location of Additional Data
☐ State Historic Preservation Office
☐ Other State agency
☐ Federal agency
☐ Local government
☐ University
☒ Other
Name of repository: Rhode Island Historical Society

Library, Providence, RI
10. Geographical Data

Acreage of Property __ 2 acres

UTM References (Place additional UTM references on a continuation sheet)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>300117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4632214</td>
</tr>
</tbody>
</table>

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title __ Joanna M. Doherty, Preservation Planner/Consultant / with Matthew A. Kierstead, Industrial Historian, PAL

organization __ Heritage Harbor Corporation / PAL __ date __ July 2004 / August 2005 __

street & number 222 Richmond Street, Suite 206 / 210 Lonsdale Ave. __ telephone (401) 751-7979 / (401) 728-8780 __

city or town __ Providence / Pawtucket __ state __ RI __ zip code __02903 / 02860__

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps
A USGS map (7.5 or 15 minute series) indicating the property's location.
A sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional items
(Check with the SHPO or FPO for any additional items)

Property Owner

(Complete this item at the request of the SHPO or FPO.)

name __ Heritage Harbor Corporation ________________________________

street & number __ 222 Richmond Street, Suite 206 __________________ telephone (401) 751-7979 __________________

city or town __ Providence __________________ state __ RI __ zip code __02903________________

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.). A federal agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB control number. Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to Keeper, National Register of Historic Places, 1849 “C” Street NW, Washington, DC
The South Street Station at 360 Eddy Street is a massive, 58,000 sq-ft, red-brick, multi-story, Classical Revival-style building located just south of downtown Providence, north of South Street, between Eddy Street to the west, and the Providence River to the east. The property is in a primarily commercial neighborhood adjacent to the Providence Jewelry Manufacturing National Register Historic District (NR 1985). The South Street Station was constructed by the Narragansett Electric Lighting Company (NELCo) in several phases and comprises three principal sections and an attached electrical Substation (Figure 1).\(^1\) The 200 Lb. House, which dates from 1912–1914 with additions in 1916–1917, 1920, and 1924, is located on the south side of the building. The Turbine Hall, constructed in 1912–1914 with additions in 1916–1917, 1921 and 1924–1925, runs along the north side of the 200 Lb. House. The 400 Lb. House, built in 1924–1925, forms a cube that constitutes the building’s west end.\(^2\) The electrical Substation extends off the north side of the building, and was constructed in 1919 and 1923, and further expanded and updated about 1952. One contributing structure, a brick pier and steel picket perimeter fence (1924–1925), runs along South and Eddy Streets and is included in this nomination. A switching yard (not included in this nomination) is located immediately to the north of the Station. South Street Station was designed largely by NELCo engineers, with consultation by J.R. Worcester & Co., engineers for the 1912-1914 building campaign, and Jenks & Ballou, engineers, for the 1924–1925 building campaign. The South Street Station replaced a previous plant that had been built by NELCo at the site in 1888–1891. There have been some alterations to the building, including the removal of the original copper cornice and nine smokestacks that stood at various times; nonetheless, the South Street Station has survived largely intact and retains a high degree of integrity.

Although constructed at different times, all components of the South Street Station exhibit consistent use of building materials and architectural detailing. The structural steel frame is sheathed in brick, which is trimmed primarily with limestone and granite, resting on a concrete-slab foundation and thousands of piles. Exterior elevations are organized into three horizontal zones: the ground level, main level, and entablature. The ground level is punctuated by a series of rectangular window openings filled in with plywood panels and metal vents. Access to the building is provided by occasional ground-level door openings. Typically, the main level and ground level are separated by two band courses; the upper one of limestone and the lower of granite. The building’s most dominant architectural feature is the arcaded fenestration at its main level. The approximately

\(^1\) On November 30, 1927 the name of the “Narragansett Electric Lighting Company” was changed to “The Narragansett Electric Company.” Both versions of the company name are referred to in this document as NELCo.

\(^2\) The “200 Lb. House” and “400 Lb. House” are historically referred to as such and were named for the amount of steam pressure in pounds per square inch that was circulated through the boilers.
30-foot-tall, round-arched window openings are flanked by brick piers with limestone capitals. Each arched window is topped by several courses of brick punctuated by limestone keystones, and rests on a limestone sill. Below the sill is a grouping of three window openings, separated by brick piers. Most of the window openings have been filled in with concrete block, brick and/or plywood, though some on the north elevation retain their original copper sash. Limestone-block or brick Doric pilasters are used to mark the corners of the building or to break the multi-bay elevations into discrete groupings. The top of the main level is marked by a limestone architrave and frieze. Until the late 1990s, a copper cornice was located immediately above the limestone bands; currently, this horizontal area features parged brick. A brick parapet with recessed panels and corbelled brick piers demarcates the building’s roofline.

The interior of the South Street Station is characterized by vast, open spaces with brick interior walls, mostly concrete flooring, exposed structural members and very little architectural ornamentation. Each building component consists of multiple levels, with the number and grade of floors varying from one section of the building to the next. Although all of the equipment was removed when the building was decommissioned in the mid-1990s, the soaring ceiling heights, cavernous holes in the floor and location of trusses and piers indicate the arrangement of the boilers and turbines that once filled the plant.

Each of the three main building components is described in detail individually, in order of their initial construction, followed by the electrical Substation.

200 Lb. House
In its current configuration, the rectangular-plan 200 Lb. House is seventeen bays long and three bays wide and measures approximately 340 feet by 80 feet. It is approximately 70 feet tall. The 200 Lb. House is of steel-frame construction with brick exterior walls laid in running bond. It is topped with a steel-deck, monitor roof finished with rubber membrane roofing. The earliest portion of the 200 Lb. House was constructed in 1912–1914 and consists of its easternmost seven bays. Four, 217 foot tall steel chimneys were constructed at that time, supplementing an existing octagonal, brick chimney that was retained from a previous NELCo plant that had been located on the site (Figure 2). Five bays and two steel chimneys were added to the west end of the 200 Lb. House in 1916–1917. Another four bays were added to the west end in 1920 (Figure 3). The current westernmost bay was added in 1924–1925, when the 400 Lb. House was constructed. Because of the use of the same building materials and a consistent architectural style, these expansions are not readily apparent.

The 200 Lb. House is abutted on the north by the Turbine Hall and on the west by the 400 Lb. House; only its south and east exterior elevations are visible. As with the rest of the building, the main level of the 200 Lb. House’s south elevation is dominated by a series of large, round-arched windows. The succession of identical windows is interrupted roughly in the middle of the elevation by a single arched window flanked on either side
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

South Street Station
Providence
Providence County, RI

Name of Property City/Town County and State
Section Number Page

by a pedimented, rectangular window opening framed by a pair of limestone pilasters with Doric capitals. A round, limestone oculus is located above each of the pedimented openings. Each end of the elevation is anchored with a pair of limestone pilasters; those at the eastern end flank two narrow arched windows, similar in style to their larger counterparts. All of the window openings on the south elevation of the 200 Lb. House have been filled in, either with concrete block, plywood, or brick.

At ground level, the south elevation of the 200 Lb. House is constructed primarily of brick with a granite sill. At the two ends and at the central window grouping, granite block is used instead of brick. Most of the ground-level windows have been filled in with plywood and metal vents. A former entry is apparent in the tenth bay from the west, where a wide opening has been filled with concrete block. Two door openings, one consisting of a pair of metal doors, and the other a single door, are located at ground level near the eastern end of the elevation, in the fifteenth and sixteenth bays from the west. Brick infill around these doors suggests that this area was altered at some time; possibly, the existing doors replaced earlier window openings.

The three-bay east elevation of the 200 Lb. House is treated similarly. Three bricked-in, round-arched windows are located at the main level. The ground level exhibits three openings: a bricked-in, rectangular window with a granite header in the first bay from the south; a wide, bricked-in opening with a concrete header in the second bay; and a sliding metal door on a track in the third bay. Areas of brick infill (e.g., near the metal door) suggest that there have been some alterations to this elevation in the past.

The interior of the 200 Lb. House is representative of the immense, open spaces found throughout the building. The basement is divided into three long aisles by steel piers, some with cross-bracing, which support brick half-walls. The outer aisles once housed the ash pits, which received the waste from the boilers on the main floor. Rectangular and circular openings perforate the brick half-walls, showing the locations of pipes that carried the ash from the boilers above. The concrete floor slopes down slightly as it approaches the 400 Lb. House on its west end. The configuration of the main floor of the 200 Lb. House corresponds to the basement plan; it consists primarily of one large space that extends for approximately 280 feet, interrupted only by steel posts that divide the space into a wide, center “nave” flanked by aisles. At one time, each side aisle housed eight boilers. Historically, a large concrete bunker was located overhead, to distribute coal to the boilers. The space at the main level now occupies the full height of the 200 Lb. House, and delicate steel trusses span the ceiling.

Turbine Hall
Like the 200 Lb. House to its south, the rectangular-plan Turbine Hall is seventeen bays long and three bays wide. It is roughly 360 feet long by 60 feet wide, and rises to a height of approximately 70 feet. It has exterior brick walls set in Common bond, and is topped by a monitor roof. Construction of the Turbine Hall began in 1912–1914, when seven bays were built to house turbines at the main level and centrifugal feed pumps in the
basement. A small addition was made to the east end of the Turbine Hall in 1916–1917, extending the length of the building by approximately 15 feet. Six bays were added to the west end in 1921, and another four bays added in 1924–1925. As with the 200 Lb. House, the incremental growth of the Turbine Hall is not immediately evident on the building’s exterior.

The Turbine Hall is abutted by other components of the South Street Station, and as a result, only its east elevation and portions of its north and west elevations are visible. The three-bay east elevation is anchored on either end by limestone-block pilasters. While the arched windows in the second and third bays from the south have been filled in with brick, plywood or metal vents, the window in the first bay retains its original metal sash, which consists of an 8-light-by-7-light window topped by a large, multi-light fanlight. There are three openings at the ground level, two of which have been filled with plywood. The northernmost opening has a metal door. Variations in the brick suggest that these openings have experienced some alterations. A tall, steel-frame tower is attached to the east elevation of the Turbine Hall, carrying power lines from the nearby Manchester Street Power Plant to the switching yard to the north.

The Turbine Hall’s north elevation is largely obscured by the South Street Station Substation. At the eastern end of the elevation, a pair of limestone pilasters and two round-arched windows are visible. Five windows are visible at the west end, all of which retain their original metal sash. Brick pilasters with limestone Doric capitals divide the windows into groups. At the ground level, a large door opening with a keystone inscribed with “1921” is located in the thirteenth bay from the east and has been filled in with concrete block. This was the last bay in the 1921 expansion. The typical rectangular window openings in the other bays have been filled in with plywood and metal vents or brick. Just one bay of the Turbine Hall is visible on the west elevation. Its windows have been filled with plywood and metal vents.

Like the other building components, the interior of the Turbine Hall is cavernous. At the basement level, the concrete floor slopes slightly as it approaches the 400 Lb. House at the west end. The space, which historically housed pumps that provided the water for the steam turbines at the main level, is currently empty and interrupted by occasional steel piers. A series of massive, roughly H-shaped, reinforced concrete braces occupy the west end of the Turbine Hall basement, and provided support for the turbines and associated equipment above; this portion of the building, which was constructed in 1925, housed a 32,500 kw turbo-generator that was fueled by four massive boilers that were housed in the 400 Lb. House (described below).

The main level of the Turbine Hall varies in grade by about 5 feet, with the different areas connected by stairs. A catwalk at a slightly higher elevation runs along a portion of the north wall, and provides access to two arched door openings, filled with concrete block, that once connected the Turbine Hall with the Substation. The decorative iron railing with filigreed brackets that runs along the catwalk provides one of the few examples of
architectural ornamentation in the interior of South Street Station. Despite the varying floor levels, the overall impression of the interior of the Turbine Hall is of a single, massive space. The space reaches to the full height of the building’s monitor roof; supported by nineteen delicate, transverse steel trusses, punctuating the length of the room. A 50-ton Morgan crane, currently parked at the east end of the room, once moved equipment by traveling along the structural steel crane rails located high on the north and south walls.

Several large openings in the floor between the basement level and the main level, mostly in the central and western portions of the room, reveal the locations of some of the turbo-generator equipment that was once located in the Turbine Hall. Protective railings surround two of these openings. A metal pipe railing, consisting of posts connected by an upper and lower rail, runs around a large opening in the west end of the Turbine Hall. Further west is another large opening, which is surrounded by a more decorative railing consisting of metal posts spaced about 5 feet apart and connected by a metal base rail, a metal upper rail and a wood hand rail. Each run of railing features six groups of three metal balusters. A control booth with sheet-metal walls and 8-light, metal-sash windows is located between these two openings in the west end of the room, at a lower grade. Walls throughout the Turbine Hall are of brick. All but the five westernmost windows on the north wall and some upper sash near the catwalk were filled with brick, probably when the Substation was built beginning in 1919. The floors at the main level are primarily of concrete, except at the western end, where the floor is finished in 8-inch square ceramic tiles.

400 Lb. House
The South Street Station’s 400 Lb. House, designed by Jenks & Ballou, a Providence engineering firm, and built by the D.E. McIntire Company of Boston, was constructed in 1924–1925 (Figure 5). The one-million-dollar addition, which forms a roughly 110-foot-by-100-foot cube at the structure’s west end, housed four new boilers, each of which weighed more than 200 tons and rose to a height of nearly 60 feet. The addition was intended, according to NELCo’s president, to “conform closely to the present style of architecture excepting that the height of the building will be raised, because of the increase in size of the boilers” (Providence Journal, 30 January 1924:24). Accordingly, the exterior walls of the 400 Lb. House are composed of brick, with one header row for every four stretcher rows, with limestone and granite trim and divided into three components: a ground level, main level and entablature. At about 100 feet tall, the 400 Lb. House is significantly taller than the rest of the building, and is topped by a flat roof that originally supported a massive, 323 foot tall, 18 foot diameter steel chimney manufactured by the Chicago Bridge and Iron Works Company. With the exception of the east elevation, which abuts both the 200 Lb. House and Turbine Hall, all sides of the 400 Lb. House are visible.

The three-bay wide west elevation fronts Eddy Street and serves as the South Street Station’s most public face. Two pedestrian metal doors are located at each end of the ground level. A pair of metal doors, located below
grade and accessed by an entry ramp, occupy the center bay. This door opening is topped with several arched courses of brick. Each of the remaining two ground-level bays is occupied by a window opening, filled in with plywood and metal vents, with a granite lintel. Four horizontal band courses, two of granite and two of limestone, separate the ground level from the main level. Since the 400 Lb. House is significantly taller than the 200 Lb. House and the Turbine Hall, the main level features a slightly different architectural treatment. On the 400 Lb. House, the main level bays are separated by full-height, brick pilasters with plain limestone caps. Each bay is occupied by a multi-story, round-arched window located above a grouping of three window openings, as on the other adjacent building components. An additional grouping of three windows is located above each arched window. These three upper windows feature brick flat-arch lintels and rest on a single limestone sill. All of the windows at the main level of the 400 Lb. House have been filled in with plywood. An interior inspection reveals that some of the original copper sash survives in the window openings. The lower window grouping consists of a central, three-light-by-four-light window flanked by two-light-by-four-light windows. As is visible at the Turbine Hall, the arched windows consist of a seven-light-by-eight-light sash with a fanlight. The upper window grouping consists of a three-light-by-six-light sash flanked by two-light-by-six-light sash. A series of horizontal, limestone band courses make up the entablature of the 400 Lb. House, while a brick parapet with recessed panels and a limestone coping rises above. On the west elevation, the limestone frieze is incised with the words “NARRAGANSETT ELECTRIC LIGHTING CO.”

The interior of the 400 Lb. House is an enormous space that, like the 200 Lb. House and Turbine Hall, includes a basement level and one tall main level. The main level of the 400 Lb. House is approximately eighty feet high. The basement includes rows of steel piers that rest on massive concrete footings on the concrete basement floor. The steel piers form a central corridor, with double doors on the west end that allowed for vehicles to enter the basement and remove the coal ash. The main level is mostly open to the space below, with steel beams and piers, some connected with cross bracing, dividing the space into four quadrants, each of which housed one of the massive boilers. Concrete decking runs along the perimeter of the space and extends into the center. As in other parts of the building interior, the walls are of brick. All of the windows in the 400 Lb. House, though boarded up on the exterior, retain their original, copper sash.

Substation

Built beginning in 1919, expanded to the north in 1923, and extended to the east around 1952, the flat-roof, brick, electrical Substation extends off the north side of the Turbine Hall (Figure 4). The 1919 section is roughly 185 feet by 30 feet, while the 1923 addition is approximately 200 feet by 20 feet. The Substation is approximately 50 feet tall, considerably shorter than the other components of the building. The three-bay wide west elevation of the 1919 section is accessed by two doors at ground level: a metal pedestrian door in the first bay and a metal pedestrian door located beneath a granite lintel, inscribed “1919,” beneath the second and third bays. Most of the windows on this elevation have replacement metal sash, possibly dating from the circa 1952
alterations, though the windows on the top floor retain their original multi-pane metal sash. The simple brick parapet is finished with a concrete coping. The east elevation is an element of the circa 1952 expansion. The brick wall is broken up by multiple door openings at different levels; several multi-light, fixed metal-sash windows; and metal vents. There is no entablature on this elevation.

The 1923 portion of the Substation more closely resembles the remainder of the South Street Station in terms of architectural ornamentation. Concrete band courses separate the ground level from the main level, and there is a limestone entablature with a copper cornice, similar to that which was removed from the rest of the building in the 1990s, with a brick parapet above. Brick quoins delineate the corners of the building at the main level. The two-bay-wide west elevation features original, copper-sash windows with concrete sills. The east elevation of the 1923 portion of the Substation seems to have been altered at the time of the circa 1952 expansion. Historical photographs show that there were six window openings in this elevation, where now there is just one, a metal-sash window in the top floor of the first bay. The north elevation, articulated into rectangular panels by contrasting masonry, has no window or door openings, and is largely obscured by the abutting switching equipment.

The interior of the 1919 portion of the Substation houses equipment in its ground level, which has a concrete floor and brick interior walls. The second and third floors were historically linked with the Turbine Hall; at the third floor, two large, round-arched door openings once provided access to the Turbine Hall’s north interior catwalk, but have been filled with concrete block. The original, glazed doors and copper trim remain. The third floor, which is finished with brick walls and a concrete floor, consists of several former offices and the control room, a large space with a mix of modern switchboards and panels dating from the 1930s. The fourth floor is divided into several small rooms, once used for laboratories and offices, and is finished with brick walls and tile floors. Several original, wood, paneled doors with four-light windows remain. The three floors of the 1923 portion of the Substation are identical in plan. Each floor is divided lengthwise into two long rooms, which house banks of breakers and cable disconnects. Flights of metal stairs occupy a narrow space connecting the 1919 and 1923 components of the Substation. The Substation remains in full commercial operation and is a vital link in the supply of electric energy to the City of Providence.

Perimeter Fence
The property includes one contributing structure, the perimeter fence west of the 400 Lb. House on Providence Assessor’s map 21, parcel 230. At the time that the 400 Lb. House was constructed, NELCo also undertook site improvements, including the construction of a gate house (not extant), a coal pulverizing plant (not extant) and the perimeter fence that runs along Eddy and South Streets. The fence consists of approximately 12 foot tall, 2-foot-by-2-foot, rectangular piers with brick shafts, concrete bases and concrete slab caps. They are spaced about 10 feet apart and linked by decorative iron fencing consisting of 10-foot-tall pickets, spaced about 6
inches apart, a lower rail and two upper rails. Ornamental, circular shapes are located between the two upper rails. A gated vehicular entrance interrupts the fence on Eddy Street, leading to the parking lot west of the 400 Lb. House. A pedestrian gate is located on the South Street side of the fence, near where the fence meets the southwest corner of the 400 Lb. House.

Conclusion
The present-day South Street Station appears largely as it did in the mid-1920s. By 1925, the 200 Lb. House, Turbine Hall, Substation, 400 Lb. House and Perimeter Fence had all been constructed and there have since been only modest changes to these building components. Around 1952, the Substation was expanded slightly to the east and in the mid-1950s the interior of the east end of the 200 Lb. House and Turbine Hall, the oldest portions of the building, were renovated (Schwartz Silver/TAMS 2001:5.9). After the Station was decommissioned in the late 1990s, the chimney stacks were demolished, the copper cornice was removed, and all of the equipment was taken out of the building. Elsewhere on the site, the 1924–1925 coal pulverizing plant had been removed by 1970, while the 1924–1925 gatehouse and a circa 1955 boiler house, known as the 2000 Lb. House and located at the northeast corner of the lot, were removed after the plant was decommissioned. Though these demolitions – particularly the gate house and the coal pulverizing plant, which would have fallen within the period of significance – altered the appearance of the site, they do not detract from the integrity of the Station itself. The South Street Station, the focal point of the site, has survived largely intact.
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>South Street Station</th>
<th>Providence</th>
<th>Providence County, RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Property</td>
<td>City/Town</td>
<td>County and State</td>
</tr>
<tr>
<td>Section Number</td>
<td>7</td>
<td>Page 9</td>
</tr>
</tbody>
</table>

PHOTOGRAPHIC INFORMATION

(Note: These photographs were taken with a digital camera at high resolution and printed on Epson Premium Glossy paper using Epson UltraChrome pigmented inks per the National Park Service March 2005 Photo Policy Expansion list of Acceptable Ink and Paper Combinations for Digital Images).

The information in numbers 1 through 5 is the same for all photographs in this nomination:

1. South Street Station
2. Providence County, Rhode Island
3. Photographer: Matthew A. Kierstead
4. August 2005
5. Original digital file on file at: Rhode Island Historical Preservation & Heritage Commission
 150 Benefit Street
 Providence, RI 02903

6. View looking northwest across Providence River showing 400 Lb. House at left, 200 Lb. House at center, and Turbine Hall at right
 7. Photograph 1

6. View looking southwest across Providence River showing 200 Lb. House at left, Turbine Hall at center, Substation at right, and 400 Lb. House at rear right
 7. Photograph 2

6. View looking southeast across Eddy Street showing portion of Substation at left, Turbine Hall at center, and 400 Lb. House at right (smokestacks at right are not part of property)
 7. Photograph 3

6. View looking northwest down South Street showing south elevation of 200 Lb. House with 400 Lb. House in left background
 7. Photograph 4

6. View of 400 Lb. House looking southeast with portion of Turbine Hall at left
 7. Photograph 5
6. Detail view looking southeast of north elevation of Turbine Hall showing original copper window frames and portion of Substation at left
7. Photograph 6

6. View looking southeast showing Substation and portion of Turbine Hall at right
7. Photograph 7

6. Interior of 200 Lb. House looking west on second floor
7. Photograph 8

6. Interior view of 400 Lb. House looking northwest on second floor
7. Photograph 9

6. Interior view of Turbine Hall looking northeast from west end of first floor level
7. Photograph 10

6. Interior view of Turbine Hall looking southwest from center of second floor level
7. Photograph 11

6. Interior view of Turbine Hall looking southwest from northeast corner of second floor level
7. Photograph 12

6. Interior view of Substation third floor control room looking west
7. Photograph 13
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

South Street Station Providence Providence County, RI
Name of Property City/Town County and State

Section Number 7 Page 11

Photo Key Map: Exterior Views
South Street Station Providence Providence County, RI
Name of Property City/Town County and State
Section Number 7 Page 12

Photo Key Map: First Floor Interior
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

South Street Station Providence Providence County, RI
Name of Property City/Town County and State

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>13</td>
</tr>
</tbody>
</table>

Photo Key Map: Second Floor Interior

![Diagram of Second Floor Interior]
South Street Station Providence Providence County, RI
Name of Property City/Town County and State
Section Number Page
7 14

Photo Key Map: Third Floor Interior
Figure 1

Fig. 1—Plan view of entire station. Additions are at left of dot-and-dash line
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Name of Property</th>
<th>City/Town</th>
<th>County and State</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Street Station</td>
<td>Providence</td>
<td>Providence County, RI</td>
</tr>
</tbody>
</table>

Section Number | Page |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Figure 2

![Image of South Street Station in Providence, RI from 1913]
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

South Street Station Providence Providence County, RI
Name of Property City/Town County and State

Section Number 7 Page 17

Figure 3

SOUTH STREET GENERATING STATION, 1920
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Name of Property</th>
<th>City/Town</th>
<th>County and State</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Street Station</td>
<td>Providence</td>
<td>Providence County, RI</td>
</tr>
</tbody>
</table>

Section Number: 7 Page: 18

Figure 4

[Image of the South Street Station in Providence, RI, with a note saying "Generating Station Showing New Switch House" and the year 1923.]
NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>South Street Station</th>
<th>Providence</th>
<th>Providence County, RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Property</td>
<td>City/Town</td>
<td>County and State</td>
</tr>
</tbody>
</table>

Section Number: 7 Page: 19

Figure 5

![Image of New Boiler Plant 1925](image-url)
STATEMENT OF SIGNIFICANCE

The South Street Station at 360 Eddy Street is significant for the broad-reaching impact the facility had on the spread of electric service in Rhode Island, thereby contributing to the growth and development of the city of Providence and outlying areas, and as an excellent example of early twentieth-century power plant design. It was constructed by the Narragansett Electric Lighting Company (NELCo) in several stages, beginning with the erection of the east end of the present-day 200 Lb. House and Turbine Hall in 1912–1914 and concluding with the construction of the present-day 400 Lb. House in 1924–1925. NELCo employed a consistent architectural style – the Classical Revival – with each building campaign, giving the massive, 58,000 sq-ft structure a unified image. Located prominently just south of downtown Providence, the building has dominated the west side of the Providence River for 90 years, operating as a functional electric generating facility until the early 1990s. It

The introduction and dissemination of electric power had an enormous impact on the growth and character of communities across the United States. City and town streets, formerly lit by dirty and inconsistent gas fixtures, became illuminated by clean and regular electric lamps. Factories that were once dependent on steam power came to rely on more efficient and cleaner electric motors. The public enjoyed the convenience of electric lighting and appliances in their homes, and the expansion of electric trolley systems encouraged new areas of residential development. Established in 1884, just two years after Thomas Edison opened the first electric generating station in the world in New York City, NELCo came to monopolize electric generation in the state of Rhode Island (Schlereth 1991:115–116; 164–165). Under the leadership of Marsden J. Perry, a powerful Providence businessman, NELCo secured municipal lighting contracts, courted the home consumer, and expanded its facilities continually in order to meet increasing demands from its manufacturing customers. In the 1910s, the South Street Station housed a 60,000 hp turbo-generator, which some sources indicate was the most powerful steam turbo-generator in the world at the time of its installation (Narragansett Electric Lighting Company 1917:8; Providence Magazine 1918). By the early 1920s, NELCo had more than 71,000 customers and its territory stretched the length of Rhode Island along the west side of Narragansett Bay, even reaching into Massachusetts and Connecticut (Narragansett Electric Lighting Company 1923:17; Narragansett Electric Lighting Company 1924). As the earliest extant generating station built by NELCo, and as one of the largest producers of electricity in the region, the South Street Station is eligible for National Register of Historic Places listing under Criterion A in the areas of industry and community planning and development.

Built over the course of several building campaigns between 1912 and 1925 and designed largely by NELCo’s engineers, the South Street Station exemplifies early-twentieth-century power plant design. The building represented a significant departure from the Central Power Station, which NELCo built on the site in 1888–1891, and which resembled a large, unadorned factory. In contrast, the South Street Station’s Classical Revival style conveyed a sense of stability to the public. Such design was typical of power plants of the period, many of
which, like the South Street Station, featured arcaded fenestration, decorative brickwork, keystones and piers (Doherty and Kierstead 1999; PAL 1997). The property is therefore eligible for National Register listing under Criterion C in the area of architecture.

The original South Street Station, built between 1912 and 1925, survives largely intact. With the notable exception of its smokestacks, which have been removed, the Station retains its historic massing and the majority of its exterior architectural features. Overall, the property maintains integrity of location, design, setting, materials, workmanship, feeling and association. The period of significance for the South Street Station is defined as 1912 to 1955, from the construction date of the first portion of the building to 50 years ago, the typical cutoff date for National Register listing.

Historical Background

Rhode Island’s standing as an early industrial center is well established, with the founding of Slater Mill in Pawtucket in 1790 encouraging the growth of textile manufactories and related industries throughout the region in the early nineteenth century. The advent of steam-powered engines during this period spawned additional mills, which no longer needed to be located at a water source, while steam railways enjoyed a construction boom in the mid-1800s, with Providence emerging as a major transportation hub. In the meantime, other industries blossomed. Foundries from the maritime period grew into large factories, in many cases manufacturing machines or parts for the textile industry. Providence became a center of jewelry manufacturing. As of 1830, the city had 27 jewelry firms that employed 280 people; by century’s end, there were more than 200 jewelry manufacturers, providing work for almost 7,000. Many of the jewelry factories were located near each other just south of downtown Providence, in the vicinity of the South Street Station (Fink 1981:4–18).

While the textile and jewelry industries continued to grow in the late 1800s, the most far-reaching technological advance of the late nineteenth century was the advent of electricity (Fink 1981:19). Since coal gas was inexpensive, the conversion to electric power in Rhode Island was neither universal nor immediate. Ultimately, however, electricity became the dominant source of power for street lighting, factory machinery and trolley transportation, in addition to its residential use. Electricity offered better illumination and less danger of fire and, unlike steam-powered machines, electric motors did not produce excess power, which was of particular concern to jewelry manufacturers (Fink 1981:19).

The first electric company in Rhode Island was organized in 1882, when the Rhode Island Electric Lighting Company established a power station on Dyer Street, between Dorrance and Ship Streets, supplying electricity to 10 arc lamps at Market Square (Cady 1957:159). The company soon had a rival, however. In mid-1883, Edward Goff, a sales representative for the Thomson-Houston Company of Lynn, Massachusetts, set up a
demonstration station in the basement of the Butler Exchange Building in downtown Providence. Goff exhibited a new type of arc lamp in the showroom and, soon after, installed one of his company’s generators in the basement of a building at the corner of Aborn and Westminster Streets. Goff installed lights in the doorway and corridors of the building in an effort to generate interest among potential customers. Goff’s first client was a skating rink on Aborn Street and in April 1884, he secured a contract for municipal street lighting. Buoyed by his triumph over the Rhode Island Electric Lighting Company, Goff chartered the Narragansett Electric Lighting Company of Rhode Island on May 29, 1884. He installed seven more Thomson-Houston generators the following September. Around that time, Goff sold his fledgling company for $25,000 to a group of investors led by the prominent Providence businessman Marsden J. Perry (1850–1935). Perry’s tenure with the company lasted until 1908, during which time he served variously as vice president, general manager, and president (Conley and Campbell 1982:118; Landry and Cruikshank 1996:14–16; McLaughlin 1978:177; Contact 1959:6; The Phenix National Bank of Providence 1945:3).

Born in Rehoboth, Massachusetts in 1850, Marsden Perry came to Providence in 1871 with little money and few connections. In 1874, he established a small loan broker’s office, offering high-interest, short-term loans in the aftermath of the panic of 1873. In 1881, Perry became the Director of the Bank of America, developing it into the Union Trust Company, a precursor to Fleet National Bank, now Bank of America. That same year, he founded the American Ring Traveler Company, which manufactured a specialized piece of equipment for textile manufacturing, making a substantial profit when he sold the company eight years later. Perry made his fortune, however, in electricity, first buying the Fall River Electric Lighting Company and then the Narragansett Electric Lighting Company in 1884. Five years later, NELCo bought its only rival, the Rhode Island Electric Lighting Company, thereby establishing a monopoly on electricity generation in the state (The Book of Rhode Island 1930:71; McLaughlin 1978:176–178).

In addition to electric companies, Perry acquired gas, water and electric streetcar companies, creating a vast financial network and opportunities for further expansion. The streetcars operated by Perry’s companies (and powered by his electric interests) encouraged the development of suburbs, which in turn demanded the extension of gas, water and electric service. Ultimately, Perry’s holdings covered much of northern Rhode Island, serving 70 percent of the state’s population along with the state’s most heavily concentrated industrial areas (McLaughlin 1978:176–178). Perry is acknowledged as a “pioneer in the electric lighting industry” (National Cyclopedia of American Biography 1930:361) and as “one of the most powerful men in Rhode Island” (McLaughlin 1978:180). Perry’s reign was effectively ended in 1908, however, when he resigned from both the Union Trust Company and NELCo. A run on the Union Trust Company during the panic of 1907 had eroded his financial resources, and his political allies, who included Senator Nelson Aldrich and Republican Party organizer Charles “Boss” Brayton, lost influence due in part to “public antagonism toward [Perry and Brayton’s] arrogant management of the public service monopolies” (McLaughlin 1978:181).
Perry oversaw NELCo from its establishment in 1884 through a period of considerable expansion. The company’s coal-powered station on Aborn Street initially operated from mid-afternoon until midnight, and supported only streetlights (Contact 1959:6). Early on, however, NELCo recognized the potential profits from providing electricity to businesses and residences and, by 1886 the company had doubled the capacity of its station and was operating it 24 hours a day (The Phenix National Bank of Providence 1945:4). The demand from manufacturing customers necessitated an expansion, and in February 1888 NELCo acquired 60,000 sq ft of land on the Providence waterfront, between Elm and South Streets, for a new power plant, or “dynamo house.” Construction of the Central Power Station began in August of that year, under the supervision of the firm Remington & Henton, who had designed the structure, and was completed in 1891. The large, brick facility rested on a foundation of 231, 50-foot-long spruce piles and concrete, and was dominated by a 257-foot-tall, octagonal brick chimney stack, one of the tallest in the region (Fink 1981:19; Henthorn 1891; McKinney 1889:76; Providence Magazine 1916:790). According to one source, the stack could handle exhaust from 10 megawatts of generation, which represented 20 times the capacity of the Aborn Street plant (Landry and Cruikshank 1996:17).

The Sanborn map from 1889 shows the new plant, identified as the “Narragansett Electric Lighting Co. Dynamo Ho.” and labeled as “under construction,” on the south side of Elm Street, on the banks of the Providence River. This location not only afforded NELCo room for a larger plant, but also established the company in one of the industrial centers of Providence. The 1889 Sanborn shows numerous industries in the immediate vicinity, including the Davol Rubber Company and E.R. Randall Planing Mill to the south, the W.B. Ride Wood Mill and What Cheer Paint Works to the west, and the Phoenix Iron Foundry, a textile machine company that produced the first textile-printing machines in America, to the immediate east (Fink 1981:9; Sanborn Map and Publishing Co. 1889). The area had a high concentration of jewelry manufacturing concerns in the late nineteenth and early twentieth centuries; the South Street Station is located just beyond the boundaries of the National Register-listed Providence Jewelry Manufacturing Historic District (Greenwood 1985). In addition, proximity to the river provided easy access to waterborne shipments of coal, which would fuel the generators in the plant. The Hopkins, Pomroy & Co. Coal Wharf, which included numerous coal pockets and storage sheds, was located on the north side of Elm Street, directly across from NELCo’s new plant (Sanborn Map and Publishing Co. 1889). By 1899, NELCo’s plant had nearly doubled in size. The Sanborn map from that year notes that the station operated “night & day” and had a “private fire alarm box” (Sanborn Map and Publishing Co. 1899).

In 1901, NELCo purchased additional land, so that the company owned the entire block from the Providence River to Eddy Street, between Elm and South Streets (Providence Magazine 1916:790). (In 1911, the company purchased an additional 62,500 sq ft north of Elm Street, bringing their lot to its current size of 8.3 acres.)
Increasing demand necessitated frequent equipment upgrades and facility expansion in the early 1900s. By 1911, the plant had an overall capacity of 24,000 hp and outdated equipment was being sold off; an article in the Providence Board of Trade Journal from November of that year includes a photograph of three, 750 hp Corliss engines available for sale “at a bargain” (Providence Board of Trade Journal, November 1911:538–543).

As of 1910, the Central Power Station powered the machinery at 14 textile mills, 58 machine shops and 75 jewelry manufacturing firms. The company actively sought additional industrial customers, providing manufacturing firms with reports that analyzed the economic benefits of switching from their existing power source to electricity (Providence Board of Trade Journal, July 1910:297–299). As the demand for electricity continued to grow, so too did the company’s capacity. A Providence Board of Trade Journal article from 1911 claimed that NELCo’s “present connected load could be represented by a string of ordinary sign lights, spaced 17 feet apart, encircling the world with a band of light. The load could also be represented by a row of six room cottages (each equipped with 8–16 candle power lamps), spaced one-fourth of a mile apart extending around the world” (Providence Board of Trade Journal, February 1911:66). The same article noted the need for the construction of a new station in the near future, to meet the ever-growing demand for power. Rather than continuing to expand upon the plant begun in 1888, the company chose to construct a new facility that, over the course of several building campaigns and two decades, would grow into the present-day South Street Station.

Construction of the South Street Station

Construction of the new power plant began with the erection of a boiler house and engine room in 1912–1914, which make up the easternmost seven bays of the present-day 200 Lb. House and Turbine Hall. The 257-foot-tall chimney stack from the original Central Power Station was retained and incorporated into the new facility. In addition, the original boiler house was maintained, at least initially, so that it could be pressed into service in the event of emergency peak loads (Narragansett Electric Lighting Company 1913:8). Work on the new building began in 1912, when contracts were placed for “a new boiler house and foundations” (Narragansett Electric Lighting Company 1912:4). The new boilers were put into service in the fall of 1914 (Narragansett Electric Lighting Company 1914:9). A lengthy article from the September 1913 Providence Board of Trade Journal details the project. At writing, the “boiler house,” or present-day 200 Lb. House, was under construction, while work on the “engine room,” or present-day Turbine Hall, was to be delayed until the spring of 1914. Plans for the building were not drawn up by architects but, rather, were “prepared by the regular engineering force of the company, and the work is being done under their supervision, largely by men directly employed by the corporation” (Providence Board of Trade Journal 1913:341). An examination of the original drawings for the building reveals that J.R. Worcester & Co. of Boston served as consulting engineers on the project, with M.W. Kern signing off on the plans. P.E. Harding Construction Company was awarded the contract to construct the building’s walls (Providence Board of Trade Journal 1913:342).
According to the Board of Trade Journal article, “an effort was made to get away from the usual power-house design, and it is hoped that the result will prove to be pleasing” (Providence Board of Trade Journal 1913:343). A Providence Journal article echoed this sentiment, stating that, “In designing the exterior walls an effort has been made to get away from the stereotyped boiler house design and, while it is quite plain, it is expected that it will be pleasing” (Providence Journal, 26 August 1913:3). The engineers chose to employ Classical Revival-style elements in the design, punctuating the elevations with full-height, round-arched windows separated by brick piers. Limestone and granite trim, including keystones and pilasters with Doric capitals, contrasted with the brick. While not elaborate, the design represented a stylistic departure from the earlier Central Power Station, which more closely resembled a factory, with rectangular window openings evenly spaced along the otherwise unarticulated brick elevations. The functional requirements of the building remained the same – to provide large, open, well-lit interior spaces that could accommodate electric generating equipment – but the image conveyed was different. Rather than simple utility, the historicism of NELCo’s new building projected an image of solidity to the public. The use of historically inspired architectural ornament at power plants was common in the early twentieth century, as these relatively new utilities were eager to garner a positive image among the public that they served. The Classical Revival style was particularly popular, and was likely influenced by other buildings of the period, such as banks and railroad stations, that sheathed large interiors in walls with round-arched windows and historically inspired detailing (Doherty and Kierstead 1999:14).

NELCo’s new boiler house, the east end of the present-day 200 Lb. House, was sited about 76 feet from the harbor line, leaving room for a coal-hoisting tower “of ample capacity” to transport coal from the docks to the boilers. Resting on a 5-foot-thick concrete platform with 2,500 piles ranging in length from 40 to 60 feet, the building featured a steel frame, walls of brick with granite and limestone trim, and concrete roof and floors. Care was taken to include no wood or “other combustible material.” In addition to the original, 257-foot-tall stack, which was retained, the boiler house featured four new, 217-foot-tall chimneys, each about 11 feet in diameter. The Board of Trade Journal article notes the “novel feature . . . in which the stacks are braced by the means of steel trusses riveted between the stacks high up in the air, where the strain comes, in place of the clumsy bracing that is frequently placed inside of the building,” allowing for large, uninterrupted open spaces (Providence Board of Trade Journal 1913:342).

The boiler house accommodated a double row of Babcock & Wilcox Company boilers at the main level, consisting of twelve 600 hp and four 440 hp boilers that were able to accommodate 200 lbs/sq in of steam pressure. The boilers burned coal distributed via a large, overhead concrete bunker, and were fed by automatic stokers at a rate that enabled the generators in the turbine hall to operate at 40,000 kw. The basement of the boiler house housed six fans “of the latest type,” which provided a draught for the stokers, along with “generous ash pits” to receive the coal ash and clinkers. The engine room, the east end of the present-day Turbine Hall,
had a pump room at the basement level, accessible both from within the engine room and from the boiler house, with three turbine-driven centrifugal feed pumps. Even at the completion of this massive new and very modern facility, NELCo anticipated expanding in the near future. The west end of the new boiler house and engine room was to be “closed with a temporary wall probably of corrugated iron. This is to allow for an extension that will be necessary soon to take care of the rapid growth of the business, the possible development of which is unbounded” (Providence Board of Trade Journal 1913:341–343).

As NELCo anticipated, demand for electricity increased dramatically throughout the 1910s and 1920s. In 1913, NELCo was awarded a five-year exclusive contract by the city of Providence to provide “highway illumination,” with magnetite arc lamps with opalescent globes on the main streets and tungsten lamps on secondary streets. In total, more than 9,000 lamps were installed by 1914, and all gas lights were removed from the city’s streets (Cady 1957:217). The company’s 1914 Annual Report noted the award of multi-year contracts to provide street lighting in nearby Johnston, North Providence and Smithfield, Rhode Island, as well as Seekonk, Massachusetts (Narragansett Electric Lighting Company 1914:9). The company continued to provide power to homes and industries, as well, and production at the South Street Station increased from 41,000,000 kwh in 1913 to 229,000,000 kwh in 1921, or by more than 500 percent (Contact 1959:6).

Increased demand necessitated additions to the South Street Station. In 1916–1917, five bays were added to the west end of the boiler house, extending its length by approximately 85 feet and accommodating an additional eight boilers and two new chimneys. A small extension was added to the east end of the engine room at the same time, adding about 15 feet to its length (Couch and Blanding 1926:669; Providence Magazine March 1918:136, 139, 142, 144). The additions did not diverge from the established architectural vocabulary of the building, but, rather, attempted to blend the new construction with the old. The arcaded fenestration, characteristic of the original 1912–1914 structure, was continued on the additions and the same building materials were used. Notations on the 1916 drawings detailing the stone and copper cornice at the addition include the following: “Stone to match present work in color and finish. Profiling moulding to match present work” (Drawing Lb.C-4851).

Around the same time, a massive, $45,000, 60,000 hp turbo-generator capable of producing 45,000 kw of electricity was installed in the existing engine house (Narragansett Electric Lighting Company 1916:8). NELCo boasted that the machine was “the largest steam engine [turbo-generator] running in the world” (Narragansett Electric Lighting Company 1917:8). An article in Providence Magazine supported this claim, calling the new turbo-generator “the most powerful and efficient piece of machinery of its kind in existence.” Weighing 1,380,000 lbs, the new turbo-generator occupied a space roughly 50 feet by 37 feet. Its installation necessitated the removal of the 257-foot-tall octagonal brick chimney. Demolition of the chimney, which had been a Providence landmark since it was constructed in 1888, began in May 1916 and was to be completed by July 1.
Contractors erected wood scaffolding around the structure and lowered the bricks via an elevator. A contemporary newspaper article indicates that at least 2/3 of the bricks were to be reused, presumably for the new additions to the Station (Providence Journal 1916:14; Providence Magazine 1918:136, 139, 142, 144).

NELCo expanded its facility yet again in 1919, with the construction of a portion of the existing Substation off the north elevation of the Turbine Hall. A date stone over the entrance to the Substation indicates that it was built in 1919, and the NELCo Annual Report from that year noted the construction of a 66,000 volt substation at a cost of $160,000 (Narragansett Electric Lighting Company 1919:7). Additions to the 200 Lb. House and Turbine Hall followed in 1920–1921. Eight new boilers were installed in an approximately 70-by-80-foot addition to the 200 Lb. House, adding another four bays to the west end of the building. These boilers provided steam for a new 45,000 kw Westinghouse turbine, almost identical to the one installed in 1917, that was housed in an approximately 85-by-60-foot addition to the west end of the Turbine Hall. The company’s 1920 Annual Report indicates that the addition to the 200 Lb. House was completed that year, while the anticipated completion date of the Turbine Hall expansion was late 1921. A photo shows the newly expanded building with a total of eight brick chimneys supported by steel trusses, upon which were mounted massive signs instructing the public to “USE ELECTRIC SERVICE” (Figure 3) (Narragansett Electric Lighting Company 1920:7; Couch and Blanding 1926:664). The 1920 Sanborn map corroborates the above dates of construction, showing the Substation and the addition to the 200 Lb. House in place and the Turbine Hall not yet expanded (Sanborn 1920). A new switch house was erected in 1923, expanding the 1919 facility to the north (Narragansett Electric Lighting Company 1919:5).

Because of the “rapidly increasing demand for electric service,” NELCo began “the largest construction program of any year in the company’s history” in 1924 (Narragansett Electric Lighting Company 1925:7). That year, the company’s Board of Directors authorized the expenditure of $1 million on four new, 1,850 hp Babcock & Wilcox boilers that would increase the capacity of the plant by 40 percent. The massive new boilers would be housed in an approximately 110-by-100-foot addition on the west end of the building – the present-day 400 Lb. House. Construction on the 400 Lb. House, which was designed by the Providence engineering firm of Jenks & Ballou and built by the D.E. McIntire Company of Boston, had begun by the fall of 1924 and was completed in 1925. Like the other components of the South Street Station, the steel-frame building featured exterior walls of brick with granite and limestone trim. The limestone entablature on the west elevation was incised with massive letters reading “NARRAGANSETT ELECTRIC LIGHTING CO.” The 400 Lb. House boasted a 323-foot-tall, 18-foot-diameter chimney which, when built, was the highest structure in Rhode Island (Providence Journal, 16 September 1924:2). The boilers, which operated under steam pressure of 375 psi, ran a massive, $850,000, 32,500 kw, General Electric turbo-generator, which was housed in an approximately 100-by-60-foot addition to the Turbine Hall, also designed by Jenks & Ballou and completed in 1925. A total of $4.65 million was spent on the 1924–1925 construction at the South Street Station, which, in
addition to the 400 Lb. House and the expansion of the Turbine Hall, included a 70-foot-long extension on the west end of the 200 Lb. House, the perimeter fence, a gate house (not extant), and a water intake tunnel (Narragansett Electric Lighting Company 1924:8, 1925:8). The 1924–1925 building campaign also included the construction of a coal pulverizing plant (not extant) at the northwest corner of NELCo’s property. Here, coal was crushed until it was “finer than talcum powder,” and then conveyed to the boiler house where it was blown into the boilers and burned to create steam to run the turbines (Providence Journal, 16 September 1924:2).

The conversion to pulverized coal was the newest one in a series of changes in fuel sources at the South Street Station. Sources indicate that NELCo converted at least some of its conventional coal-fired boilers to run off oil in the late 1910s and 1920s. The 1919 Annual Report noted the installation of a 210,000-gallon oil storage tank on the property, while the 1920 Sanborn map shows two large crude-oil storage tanks, along with a coal pile, located to the north of the Station, on land that had been acquired by NELCo in 1911 (Narragansett Electric Lighting Company 1911:6, 7). A 1926 article explains that “the price of coal – always high in New England – rose to a prohibitive level in 1920 because of strikes. At the same time the establishment of an oil refinery in Providence made possible a very favorable two-year contract for fuel oil” (Couch and Blanding 1926:664). Oil prices soon increased, however, and coal prices came down; the earliest boilers were converted back to conventional coal while the newer boilers, which had no stokers, were refashioned to run off pulverized coal (Couch and Blanding 1926:664). When the four massive boilers were added in 1924–1925, they, too, were designed to run off pulverized coal (Narragansett Electric Lighting Company 1925:8–9).

The experimentation with pulverized coal distinguished the South Street Station from other electric generating stations. An article from 1926, written by D.H. Couch, an engineer who designed the pulverized-coal burner in use at the plant, and Robert L. Blanding, an associate at Jenks & Ballou, Engineers, who designed the 1924–1925 expansion, argues that:

With the recent completion of a 35,000-kw addition, the South Street Station of the Narragansett Electric Lighting Company in Providence, Rhode Island, is one of the most interesting of the country’s large stations from the engineering point of view. It exhibits in a single structure three types of firing (pulverized fuel, stokers and oil burners), jet-condenser operation and water softening on a large scale, air preheaters of three different types, the latest equipment and furnace design for pulverized coal, a novel heat balance to meet a special condition and the tying together of two station sections operating at different steam pressures and temperatures (Couch and Blanding 1926:664).
By the mid-1920s, the South Street Station had taken on its present-day configuration, consisting of a 340-by-80 foot 200 Lb. House (1912–1914, with additions in 1916–1917, 1920 and 1924), the 370-foot-by-60-foot Turbine Hall (1912–1914, with additions in 1916–1917, 1921 and 1924–1925), the roughly 200-by-20-foot Substation (1919 with an addition in 1923) and the 110-by-100-foot 400 Lb. House (1924–1925). While the station remained largely unaltered in the years immediately following the 1924–1925 expansion, NELCo’s corporate structure changed significantly. During the 1920s, the New England Power Association (NEPA) became interested in acquiring NELCo as part of a broader campaign to increase its holdings. Specifically, NEPA wanted to add steam-powered plants to its numerous hydropower stations, thereby broadening its regional presence and creating a network of plants that could share power resources and assist one another in times of power shortage. Initially, NELCo’s management – and local citizens – resisted the takeover, preferring to maintain local control of the company. NEPA persisted, however, ultimately managing to acquire NELCo through a series of complex business maneuvers. In 1926, NEPA established the United Electric Power Company, with a charter that allowed it to buy and sell assets, including utility companies. In January 1927, NELCo’s management acquiesced to NEPA’s advances, recommending that its stockholders accept a purchase offer. NEPA renamed the United Electric Power Company as The Narragansett Electric Company, and had that entity purchase the Narragansett Electric Lighting Company. The acquisition by NEPA ushered in a period of corporate streamlining, perhaps most notably in 1947, when the New England Electric System (NEES) was established as a new holding company for the many utilities, including NELCo, that had been acquired by NEPA in the early 1900s (Landry and Cruikshank 1996:65–91, 139–142).

In the 12 years following the end of World War II, NEES met the rapidly increasing demand for electricity with $450 million worth of capital improvements, thereby doubling its generating capacity. This was in part accomplished through the use of high-pressure steam production, which required less coal. In the 1940s, three 45-megawatt, high-pressure generators were installed at the Manchester Street Station, located just south of the South Street Station, which had been acquired by NEPA from the United Electric Railways Company in the 1931 (acquisition negotiations began in 1926). As new, more efficient generators came on line, many of NEES’s smaller, older stations became relegated to peak service only. Last updated in 1924–1925, the South Street Station almost met that fate in the mid-1900s. Instead, NEES employed a “topping” technology intended to increase the output of older plants. At the South Street Station, two new, high-pressure boilers were installed in a new boiler house (not extant) at the northeast corner of the lot, along with a 55 mw turbo-generator, at a cost of $20 million. Though never as efficient as hoped, the system was operational by 1955 and the remaining low-pressure steam generators at the station were gradually taken out of service (Landry and Cruikshank 1996:139–149; Contact 1959:7). Around the same time, the interior of the east end of the 200 Lb. House and Turbine Hall, the oldest portion of the building, was renovated (Schwartz Silver/TAMS 2001:5.9).
Historical maps and plans from the 1950s depict the South Street Station site at the peak of its development. The Sanborn atlas from 1955 shows the new powerhouse, as well as the coal pulverizing facility that was built at the northwest corner of the site in 1924–1925. A coal conveyer on a 30-foot-tall steel trestle linked the pulverizing plant to both the new powerhouse and the original facility, and continued south along the west side of the river, to provide coal to Narragansett Electric’s Manchester Street Power Plant. A plan and elevation from 1956 labels the structure in the northwest corner of the lot a “former coal house,” and shows the addition of three fuel oil tanks at the north side of the property, suggesting that at least some of the boilers were now running off of oil. The new powerhouse, known as the 2000 Lb. House, had a 331-foot-tall smokestack, and two of the chimneys on the 1912–1925 plant had been removed by this time (Drawing Lb.B-2025). By 1970, only one oil tank was located on the property and the coal pulverizing facility was no longer extant (Sanborn Map Company 1970).

Ultimately, NELCo phased out the South Street Station in favor of their Manchester Street Power Plant, which was expanded and modernized in 1995. The subsequent decommissioning of the South Street Station resulted in the removal of the 1924–1925 gate house, the 1950s 2000 Lb. House and the oil tanks. The chimney stacks were removed from the roof of the building. In 1999, the original 1912–1925 structure (with the exception of the Substation on its north side) was donated to Heritage Harbor Corporation, a non-profit organization that intends to rehabilitate the building for commercial use and use as a statewide history museum. The conveyance included the building and the roughly 15,000 sq ft of land between it and Eddy Street, comprising about 1.76 acres. NELCo maintains ownership of the Substation, which is still active, and the remainder of the lot (Schwartz Silver/TAMS 2001:1.1–1.2, 2.2, 4.3).

Despite these changes to the facility and site, South Street Station remains largely intact and retains a high degree of integrity. Though no longer producing power outside of the Substation, the massive building still conveys the monumental impact of electricity on American life in the early twentieth century and speaks to the role that the Narragansett Electric Company, the largest producer of electricity in Rhode Island, played in the state’s development.
South Street Station Providence Providence County, RI
Name of Property City/Town County and State
Section Number Page
9 1

MAJOR BIBLIOGRAPHIC REFERENCES

Published and Unpublished Materials

Adams, Virginia Hedges

Anon.
n.d. “Narragansett Electric: 100 Years of Service.” Flyer on file, Rhode Island Historical Society Library, Providence, RI.

The Book of Rhode Island
1930 Providence, RI: Rhode Island State Bureau of Information in cooperation with Rhode Island Conference of Business Associations.

Cady, John Hutchins

Conley, Patrick T., and Paul Campbell

Contact

Couch, D.H., and Robert L. Blanding
1926 “Enlarged Narragansett Plant Embodies Unusual Engineering Features.” *Power*, 4 May 1926. Clipping on file, Heritage Harbor Corporation, Providence, RI.

Doherty, Joanna, and Matthew A. Kierstead

Narragansett Electric Company
n.d. “A Serial Story of Mr. Kilo Watt; The Thrilling Tale of the Wonders of a Wonder Worker Told in Monthly Installments by Kilo Watt, Himself.” On file, Rhode Island Historical Society Library, Providence, RI.

Narragansett Electric Lighting Company
various Annual Report and Statements, 1908-1925. On file, Rhode Island Historical Society Library, Providence, RI.

National Cyclopedia of American Biography

Phenix National Bank of Providence

Public Archaeology Laboratory (PAL)
1997 Massachusetts Historical Commission Inventory Forms for the South Boston Power Station at 696 East First St, Boston, MA and for the L Street Station at 776 Summer Street in Boston, MA. On file, Massachusetts Historical Commission, Boston, MA.

Schlereth, Thomas J.

Schwartz Silver/TAMS Joint Venture
Maps and Atlases

Sanborn Map Company

Sanborn Map and Publishing Co., Ltd.

Sanborn Map and Publishing Co., Ltd.

Newspaper Articles (listed chronologically)

Providence Journal
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>South Street Station</th>
<th>Providence</th>
<th>Providence County, RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Property</td>
<td>City/Town</td>
<td>County and State</td>
</tr>
<tr>
<td>Section Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Articles from the Providence Board of Trade Journal and Providence Magazine (listed chronologically)

Providence Board of Trade Journal
1891 “Narragansett Electric Light Company.” *Providence Board of Trade Journal*. Clipping on file, Heritage Harbor Corporation, Providence, RI.
United States Department of the Interior
National Park Service

NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>South Street Station</th>
<th>Providence</th>
<th>Providence County, RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Property</td>
<td>City/Town</td>
<td>County and State</td>
</tr>
<tr>
<td>Section Number</td>
<td>9</td>
<td>Page 6</td>
</tr>
</tbody>
</table>

Providence Magazine

Architectural Drawings and Historic Photographs

Hundreds of architectural drawings related to the construction of the South Street Station, dating mostly from the 1910s through the 1950s, are on file at the offices of TAMS, 38 Chauncey Street, Boston, MA. The drawings have been indexed and assigned unique numbers, which are used for citations in this nomination.

Heritage Harbor Corporation has several scrapbooks containing historical photos – primarily from the mid-1900s – of the South Street Station at its office, 222 Richmond Street, Providence, RI.
GEOGRAPHICAL DATA

Verbal Boundary Description

Beginning at a point at the northwest corner of Providence, Rhode Island Assessor’s Map 21/Parcel 430 (21/430)
- east to the southwest corner of The Narragansett Electric Company (NELCo) Substation building on the south edge of
 21/429
- north to the northeast corner of the Substation building footprint within 21/429
- east to the northeast corner of the Substation building footprint
- south to the southeast corner of the Substation building footprint on the north edge of 21/430
- east to the northeast corner of 21/430
- south to the southeast corner of 21/430
- west to the southwest corner of 21/430
- north to the northwest corner of 21/430, the point of beginning.

Boundary Justification:

The boundary described above includes the remaining contiguous historic and structural resources associated with activity at the Station during its period of significance. The overall footprint of the multiple-component building within the nominated property is bisected by the east-west boundary between 21/429 (owned by The Narragansett Electric Company [NELCo]) and 21/430 (owned by Heritage Harbor Corporation [HHC]). This line coincides with the wall separating HHC’s attached 200 Lb. House/400 Lb. House/Turbine Hall, and NELCo’s attached Substation. The boundary for HHC’s 21/430 follows legally recorded property lines that partially correspond to the existing footprint of the South Street Station, and follow the lot lines west to include the Perimeter Fence at the west edge of the 21/430 parcel. The boundary for the NELCo Substation portion of the nominated property located on 21/429 follows the footprint of the building and does not include any adjacent land or structures per the utility company’s wishes.